263
Views
0
CrossRef citations to date
0
Altmetric
Articles

LES of premixed jet flames subjected to extreme turbulence using flamelet-generated manifolds: a comparison of unstrained and strained flamelets

ORCID Icon, , &
Pages 1-19 | Received 29 Oct 2022, Accepted 19 Jun 2023, Published online: 23 Aug 2023

References

  • J. van Oijen, A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, and L. de Goey, State-of-the-art in premixed combustion modeling using flamelet generated manifolds, Prog. Energy. Combust. Sci. 57 (2016), pp. 30–74.
  • O. Gicquel, N. Darabiha, and D. Thevenin, Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28(2) (2000), pp. 1901–1908.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid. Mech. 504 (2004), pp. 73–97.
  • A. Hosseinzadeh, A. Sadiki, F. di Mare, and J. Janicka, Effects of subgrid scale and combustion modelling on flame structure of a turbulent premixed flame within les and tabulated chemistry framework, Combust. Theory Model. 21(5) (2017), pp. 838–863.
  • J.F. Driscoll, J.H. Chen, A.W. Skiba, C.D. Carter, E.R. Hawkes, and H. Wang, Premixed flames subjected to extreme turbulence: some questions and recent answers, Prog. Energy. Combust. Sci. 76 (2020), pp. 100802.
  • A.W. Skiba, T.M. Wabel, C.D. Carter, S.D. Hammack, J.E. Temme, and J.F. Driscoll, Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram, Combust. Flame. 189 (2018), pp. 407–432.
  • B. Zhou, C. Brackmann, Z. Li, M. Alden, and X.-S. Bai, Simultaneous multi-species and temperature visualization of premixed flames in the distributed reaction zone regime, Proc. Combust. Inst. 35(2) (2015), pp. 1409–1416.
  • W. Zhang, J. Wang, W. Lin, G. Li, Z. Hu, M. Zhang, and Z. Huang, Effect of hydrogen enrichment on flame broadening of turbulent premixed flames in thin reaction regime, Int. J. Hydrogen. Energy.46(1) (2021), pp. 1210–1218.
  • E. Knudsen, H. Kolla, E.R. Hawkes, and H. Pitsch, LES of a premixed jet flame DNS using a strained flamelet model, Combust. Flame. 160(12) (2013), pp. 2911–2927.
  • W. Han, H. Wang, G. Kuenne, E.R. Hawkes, J.H. Chen, J. Janicka, and C. Hasse, Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame, Proc. Combust. Inst. 37(2) (2019), pp. 2555–2563.
  • F.C.C. Galeazzo, B. Savard, H. Wang, E.R. Hawkes, J.H. Chen, and G.C. Krieger Filho, Performance assessment of flamelet models in flame-resolved les of a high Karlovitz methane/air stratified premixed jet flame, Proc. Combust. Inst. 37(2) (2019), pp. 2545–2553.
  • H. Wang, E.R. Hawkes, B. Savard, and J.H. Chen, Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame, Combust. Flame. 193 (2018), pp. 229–245.
  • J. Van Oijen and L. De Goey, Modelling of premixed counterflow flames using the flamelet-generated manifold method, Combust. Theory Model. 6(3) (2002), pp. 463–478.
  • A. Donini, R. Bastiaans, J. van Oijen, and L. de Goey, A 5-d implementation of FGM for the large eddy simulation of a stratified swirled flame with heat loss in a gas turbine combustor, Flow, Turbulence Combust. 98(3) (2017), pp. 887–922.
  • W. Zhang, S. Karaca, J. Wang, Z. Huang, and J. van Oijen, Large eddy simulation of the Cambridge/Sandia stratified flame with flamelet-generated manifolds: Effects of non-unity Lewis numbers and stretch, Combust. Flame. 227 (2021), pp. 106–119.
  • F. Proch and A.M. Kempf, Numerical analysis of the Cambridge stratified flame series using artificial thickened flame les with tabulated premixed flame chemistry, Combust. Flame. 161(10) (2014), pp. 2627–2646.
  • Z.X. Chen, I. Langella, R.S. Barlow, and N. Swaminathan, Prediction of local extinctions in piloted jet flames with inhomogeneous inlets using unstrained flamelets, Combust. Flame. 212 (2020), pp. 415–432.
  • B. Zhou, C. Brackmann, Z. Wang, Z. Li, M. Richter, M. Alden, and X.-S. Bai, Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations, Combust. Flame. 175 (2017), pp. 220–236.
  • M.J. Dunn, A.R. Masri, and R.W. Bilger, A new piloted premixed jet burner to study strong finite-rate chemistry effects, Combust. Flame. 151(1-2) (2007), pp. 46–60.
  • H. Wang, E.R. Hawkes, and J.H. Chen, A direct numerical simulation study of flame structure and stabilization of an experimental high ka ch4/air premixed jet flame, Combust. Flame. 180 (2017), pp. 110–123.
  • H. Wang, E.R. Hawkes, B. Zhou, J.H. Chen, Z. Li, and M. Alden, A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number, Proc. Combust. Inst. 36(2) (2017), pp. 2045–2053.
  • A. Ketelheun, C. Olbricht, F. Hahn, and J. Janicka, No prediction in turbulent flames using LES/FGM with additional transport equations, Proc. Combust. Inst. 33(2) (2011), pp. 2975–2982.
  • D.V. Efimov, P. de Goey, and J. van Oijen, QFM: quenching flamelet-generated manifold for modelling of flame-wall interactions, Combust. Theory Model. 24(1) (2020), pp. 72–104.
  • D.V. Efimov, P. de Goey, and J. van Oijen, FGM with REDx: chemically reactive dimensionality extension, Combust. Theory Model. 22(6) (2018), pp. 1103–1133.
  • B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Alden, and X.-S. Bai, Distributed reactions in highly turbulent premixed methane/air flames: part I. flame structure characterization, Combust. Flame. 162(7) (2015), pp. 2937–2953.
  • F. Carbone, J.L. Smolke, A.M. Fincham, and F.N. Egolfopoulos, Comparative behavior of piloted turbulent premixed jet flames of c1c8 hydrocarbons, Combust. Flame. 180 (2017), pp. 88–101.
  • R. Barlow, J. Frank, A. Karpetis, and J.-Y. Chen, Piloted methane/air jet flames: transport effects and aspects of scalar structure, Combust. Flame. 143(4) (2005), pp. 433–449.
  • F. Fuest, G. Magnotti, R. Barlow, and J. Sutton, Scalar structure of turbulent partially-premixed dimethyl ether/air jet flames, Proc. Combust. Inst. 35(2) (2015), pp. 1235–1242.
  • S. Meares and A.R. Masri, A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures, Combust. Flame. 161(2) (2014), pp. 484–495.
  • M. Klein, A. Sadiki, and J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J. Comput. Phys. 186(2) (2003), pp. 652–665.
  • M. Immer, Time-resolved measurement and simulation of local scale turbulent urban flow, ETH Zurich, 2016.
  • M.P. Martín, U. Piomelli, and G.V. Candler, Subgrid-Scale models for compressible large-Eddy simulations, Theoret. Comput. Fluid Dyn. 13(5) (2000), pp. 361–376.
  • H. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12(6) (1998), pp. 620–631.
  • R. Bilger, The structure of turbulent nonpremixed flames, Proc. Combust. Inst. 22(1) (1989), pp. 475–488.
  • H. Gupta, O.J. Teerling, and J. van Oijen, Effect of progress variable definition on the mass burning rate of premixed laminar flames predicted by the flamelet generated manifold method, Combust. Theory Model. 25(4) (2021), pp. 631–645.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr, and V. Lissianski, Gri 3.0 mechanism, Gas Research Institute (1999). Available at http://www.me.berkeley.edu/grimech.
  • A. Ketelheun, G. Kuenne, and J. Janicka, Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry, Flow, Turbulence Combust. 91(4) (2013), pp. 867–893.
  • A. Donini, R.J.M. Bastiaans, J. van Oijen, and L.P.H. de Goey, Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames, Proc. Combust. Inst. 35(1) (2015), pp. 831–837.
  • J. Floyd, A.M. Kempf, A. Kronenburg, and R. Ram, A simple model for the filtered density function for passive scalar combustion les, Combust. Theory Model. 13(4) (2009), pp. 559–588.
  • C.D. Pierce and P. Moin, A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar, Phys. Fluids 10(12) (1998), pp. 3041–3044.
  • B. Ranganath and T. Echekki, Effects of preferential and differential diffusion on the mutual annihilation of two premixed hydrogen–air flames, Combust. Theory Model. 9(4) (2005), pp. 659–672.
  • P. Venkateswaran, A. Marshall, D. Shin, D. Noble, J. Seitzman, and T. Lieuwen, Measurements and analysis of turbulent consumption speeds of H2/CO mixtures, Combust. Flame. 158(8) (2011), pp. 1602–1614.
  • W. Zhang, J. Wang, W. Lin, R. Mao, H. Xia, M. Zhang, and Z. Huang, Effect of differential diffusion on turbulent lean premixed hydrogen enriched flames through structure analysis, Int. J. Hydrogen. Energy. 45(18) (2020), pp. 10920–10931.
  • A.R. Masri, Partial premixing and stratification in turbulent flames, Proc. Combust. Inst. 35(2) (2015), pp. 1115–1136.
  • D. Butz, S. Hartl, S. Popp, S. Walther, R.S. Barlow, C. Hasse, A. Dreizler, and D. Geyer, Local flame structure analysis in turbulent CH4/air flames with multi-regime characteristics, Combust. Flame. 210 (2019), pp. 426–438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.