61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of flame radiation on aluminium particle combustion time

&
Received 25 Sep 2023, Accepted 24 May 2024, Published online: 13 Jun 2024

References

  • M. Beckstead, A summary of aluminum combustion, RTO/VKI Special Course on Internal Aerodynamics in Solid Rocket Propulsion RTO-EN-023 (2004).
  • M. Salita, Survey of recent Al2O3 droplet size data in solid rocket chambers, nozzles, and plumes, in 21st JANNAF Exhaust Plume Technology Meeting, 1, 1994, pp. 1–17.
  • S. Gallier, A. Braconnier, F. Godfroy, F. Halter, and C. Chauveau, The role of thermophoresis on aluminum oxide lobe formation, Combust. Flame 228 (2021), pp. 142–153.
  • A. Braconnier, Etude expérimentale de la combustion d'une particule d'aluminium isolée, Ph.D. diss., University of Orléans (in French), 2020.
  • S. Morizumi and H. Carpenter, Thermal radiation from the exhaust plume of an aluminized composite propellant rocket, J. Spacecr. Rockets 1 (1964), pp. 501–507.
  • D. Parry and M. Brewster, Optical constants of Al2O3 smoke in propellant flames, J. Thermophys. Heat Transf. 5 (1991), pp. 142–149.
  • J. Jung and M. Brewster, Radiative heat transfer analysis with molten Al2O3 dispersion in solid rocket motors, J. Spacecr. Rockets 45 (2008), pp. 1021–1030.
  • V. Bityukov and V. Petrov, Absorption coefficient of molten aluminum oxide in semitransparent spectral range, Appl. Phys. Res. 5 (2013), pp. 51.
  • I. Ranc-Darbord, G. Baudin, M. Genetier, D. Ramel, P. Vasseur, J. Legrand, and V. Pina, Emission of gas and Al2O3 smoke in Gas–Al particle deflagration: experiments and emission modeling for explosive fireballs, Int. J. Thermophys. 39 (2018), pp. 1–28.
  • M. Beckstead, Y. Liang, and K. Pudduppakkam, Numerical simulation of single aluminum particle combustion, Combust. Explos. Shock Waves 41 (2005), pp. 622–638.
  • E. Washburn, J. Trivedi, L. Catoire, and M. Beckstead, The simulation of the combustion of micrometer-sized aluminum particles with steam, Combust. Sci. Technol. 180 (2008), pp. 1502–1517.
  • Y. Fabignon, J. Trubert, D. Lambert, O. Orlandi, and J. Dupays, Combustion of aluminum particles in solid rocket motors, AIAA Paper 2003-4807 (2003).
  • B. Bojko, P. DesJardin, and E. Washburn, On modeling the diffusion to kinetically controlled burning limits of micron-sized aluminum particles, Combust. Flame 161 (2014), pp. 3211–3221.
  • S. Gallier, F. Sibe, and O. Orlandi, Combustion response of an aluminum droplet burning in air, Proc. Combust. Inst. 33 (2011), pp. 1949–1956.
  • J. Glorian, S. Gallier, and L. Catoire, On the role of heterogeneous reactions in aluminum combustion, Combust. Flame 168 (2016), pp. 378–392.
  • M. Gurevich, E. Ozerov, and L. Rybina, Calculation of the rate of vapor-phase diffusion combustion of a metallic particle, Combust. Explos. Shock Waves 10 (1974), pp. 317–324.
  • L. Klyachko, Combustion of a stationary particle of low-boiling metal, Combust. Explos. Shock Waves 5 (1969), pp. 279–284.
  • K. Brooks and M. Beckstead, Dynamics of aluminum combustion, J. Propuls. Power 11 (1995), pp. 769–780.
  • C.F. Curtiss and J.O. Hirschfelder, Transport properties of multicomponent gas mixtures, J. Chem. Phys. 17 (1949), pp. 550–555.
  • S. Gordon and B.J. McBride, Computer program for calculation of complex chemical equilibrium compositions and applications, Tech. Rep., 1996.
  • F. Halter, V. Glasziou, M. Di Lorenzo, S. Gallier, and C. Chauveau, Peculiarities of aluminum particle combustion in steam, Proc. Combust. Inst. 39 (2023), pp. 3605–3614.
  • S. Gallier and F. Godfroy, Aluminum combustion driven instabilities in solid rocket motors, J. Propuls. Power 25 (2009), pp. 509–521.
  • S. Gallier, B. Briquet, and M. Yiao, Aluminum combustion can drive instabilities in solid rocket motors: T-burner study, J. Propuls. Power 35 (2019), pp. 159–172.
  • I. Toumi, A weak formulation of Roe's approximate Riemann solver, J. Comput. Phys. 102 (1992), pp. 360–373.
  • B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows, J. Comput. Phys. 95 (1991), pp. 59–84.
  • P. Bucher, R. Yetter, F.L. Dryer, T. Parr, and D. Hanson-Parr, PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidisers, and comparison with model calculations, in Proc. Comb. Inst., Vol. 27. Elsevier, 1998, pp. 2421–2429.
  • A. Braconnier, C. Chauveau, F. Halter, and S. Gallier, Experimental investigation of the aluminum combustion in different O2 oxidising mixtures: effect of the diluent gases, Exp. Therm. Fluid Sci. 17 (2020), pp. 110110.
  • K. Tang and M. Brewster, Numerical analysis of radiative heat transfer in an aluminum distributed combustion region, Numer. Heat Transf. 22 (1992), pp. 323–342.
  • M. Brewster and D. Parry, Radiative heat feedback in aluminized solid propellant combustion, J. Thermophys. Heat Transf. 2 (1988), pp. 123–130.
  • J. Harrison and M. Brewster, Simple model of thermal emission from burning aluminum in solid propellants, J. Thermophys. Heat Transf. 23 (2009), pp. 630–634.
  • J.R. Mahan, Radiation Heat Transfer: A Statistical Approach, John Wiley & Sons, 2002.
  • J.R. Howell, M.P. Mengüç, K. Daun, and R. Siegel, Thermal Radiation Heat Transfer, CRC Press, 2020.
  • Q. Brewster and D. Parry, In-situ measurements of alumina particle size and optical constants in composite solid propellant flames, in 22nd Thermophysics Conference, AIAA Paper 87-1582. 1987.
  • A. Pluchino and D. Masturzo, Emissivity of Al2O3 particles in a rocket plume, AIAA J 19 (1981), pp. 1234–1237.
  • W. Konopka, R. Reed, and V. Calia, Measurements of infrared optical properties of Al2O3 rocket particles, in 18th Thermophysics Conference. 1983, p. 1568.
  • C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.
  • C. Mätzler, MATLAB functions for Mie scattering and absorption, version 2, Research Report 2002-11, Institute of Applied Physics, University of Bern (2002).
  • R.B. Moussa, C. Proust, M. Guessasma, K. Saleh, and J. Fortin, Physical mechanisms involved into the flame propagation process through aluminum dust-air clouds: a review, J. Loss Prev. Process. Ind. 45 (2017), pp. 9–28.
  • L.A. Dombrovsky, Near-infrared properties of droplets of aluminum oxide melt, in Thermopedia, Begel House Inc., 2011.
  • J. Finke and F. Sewerin, Combining a population balance approach with detailed chemistry to model the condensation of oxide smoke during aluminum combustion in spatially homogeneous reactors, Combust. Flame 248 (2023), pp. 112510.
  • A.M. Savel'ev and A.M. Starik, The formation of (Al2O3) n clusters as a probable mechanism of aluminum oxide nucleation during the combustion of aluminized fuels: numerical analysis, Combust. Flame 196 (2018), pp. 223–236.
  • G.N. Plass, Mie scattering and absorption cross sections for aluminum oxide and magnesium oxide, Appl. Opt. 3 (1964), pp. 867–872.
  • L. Dombrovsky, On possibility of determination of disperse composition of two-phase flow using light scattering under small angles, Teplof. Vys. Temp 20 (1982), pp. 549–557.
  • M. Beckstead, Correlating aluminum burning times, Combust. Explos. Shock Waves 41 (2005), pp. 533–546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.