419
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Distinctions of geomorphological properties caused by different flow-direction predictions from digital elevation models

&
Pages 168-185 | Received 06 Apr 2015, Accepted 01 Aug 2015, Published online: 20 Aug 2015

References

  • Band, L.E., 1986. Topographic partition of watersheds with digital elevation models. Water Resources Research, 22, 15–24. doi:10.1029/WR022i001p00015
  • Bates, P.D. and De Roo, A.P.J., 2000. A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236, 54–77. doi:10.1016/S0022-1694(00)00278-X
  • Beven, K.J. and Kirkby, M.J., 1979. A physically based variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24 (1), 43–69. doi:10.1080/02626667909491834
  • Beven, K.J. and Wood, E.F., 1983. Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology, 65, 139–158. doi:10.1016/0022-1694(83)90214-7
  • Bras, R.L. and Rodriguez-Iturbe, I., 1989. A review of the search for a quantitative link between hydrologic response and fluvial geomorphology. In: M.L. Kavvas, ed. New directions for surface water modelling, 149–163. IAHS Publications no. 181.
  • Calver, A., Kirkby, M.J., and Weyman, D.R., 1972. Modelling hillslope and channel flows. In: R.J. Chorley, ed. Spatial analysis in geomorphology. London: Methuen, 197–218.
  • Douglas, D.H., 1986. Experiments to locate ridges and channels to create a new type of digital elevation model. Cartographica: The International Journal for Geographic Information and Geovisualization, 23 (4), 29–61. doi:10.3138/D4L1-1525-N578-2578
  • Freeman, T.G., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences, 17, 413–422. doi:10.1016/0098-3004(91)90048-I
  • Galland, J.-C., Goutal, N., and Hervouet, J.-M., 1991. TELEMAC: a new numerical model for solving shallow water equations. Advances in Water Resources, 14, 138–148. doi:10.1016/0309-1708(91)90006-A
  • Gupta, V.K., Waymire, E., and Rodriguez-Iturbe, I., 1986. On scales, gravity and network structure in basin runoff. In: V.K. Gupta, I. Rodriguez-Iturbe, and E.F. Wood, eds. Scale problems in hydrology. Dordrecht: D. Reidel, 159–184.
  • Henderson, F.M. and Wooding, R.A., 1964. Overland flow and groundwater flow from a steady rainfall of finite duration. Journal of Geophysical Research, 69 (8), 1531–1540. doi:10.1029/JZ069i008p01531
  • Jenson, S.K. and Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54 (11), 1593–1600.
  • Kirkby, M.J., 1976. Tests of the random network model, and its application to basin hydrology. Earth Surface Processes, 1, 197–212. doi:10.1002/(ISSN)1096-9837
  • Kirpich, Z.P., 1940. Time of concentration of small agricultural watersheds. Civil Engineering, 10 (6), 362.
  • Kuichling, E., 1889. The relation between the rainfall and the discharge of sewers in populous districts. Transactions of the American Society of Civil Engineers, 20, 1–60.
  • Lee, K.T., 1998. Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study. Journal of the American Water Resources Association, 34 (2), 375–384. doi:10.1111/jawr.1998.34.issue-2
  • Lee, K.T. and Yen, B.C., 1997. Geomorphology and kinematic-wave-based hydrograph derivation. Journal Hydraulic Engineering, 123 (1), 73–80. doi:10.1061/(ASCE)0733-9429(1997)123:1(73)
  • Lindsay, J.B., 2003. A physically based model for calculating contributing area on hillslopes and along valley bottoms. Water Resources Research, 39 (12), 1332. doi:10.1029/2003WR002576
  • Maksimovic, C., et al., 2009. Overland flow and pathway analysis for modelling of urban pluvial flooding. Journal of Hydraulic Research, 47, 512–523. doi:10.1080/00221686.2009.9522027
  • Moussa, R. and Chahinian, N., 2009. Comparison of different multiobjective calibration criteria using a conceptual rainfall-runoff model of flood events. Hydrology and Earth Systems Sciences, 13, 519–535. doi:10.5194/hess-13-519-2009
  • O’Brien, J.S., Julien, P.Y., and Fullerton, W.T., 1993. Two-dimensional water flood and mudflow simulation. Journal Hydraulic Engineering, 119, 244–261. doi:10.1061/(ASCE)0733-9429(1993)119:2(244)
  • O’Callaghan, J.F. and Mark, D.M., 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28, 323–344. doi:10.1016/S0734-189X(84)80011-0
  • O’Loughlin, E.M., 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resources Research, 22, 794–804. doi:10.1029/WR022i005p00794
  • O’Neil, G. and Shortridge, A., 2013. Quantifying local flow direction uncertainty. International Journal of Geographical Information Science, 27 (7), 1292–1311. doi:10.1080/13658816.2012.719627
  • Orlandini, S., et al., 2003. Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models. Water Resources Research, 39 (6), 1144. doi:10.1029/2002WR001639
  • Qin, C., et al., 2013. Artificial surfaces simulating complex terrain types for evaluating grid-based flow direction algorithms. International Journal of Geographical Information Science, 27 (6), 1055–1072. doi:10.1080/13658816.2012.737920
  • Qin, C., et al., 2007. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science, 21 (4), 443–458. doi:10.1080/13658810601073240
  • Quinn, P., et al., 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processing, 5, 59–79. doi:10.1002/(ISSN)1099-1085
  • Seibert, J. and McGlynn, B.L., 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 43, W04501. doi:10.1029/2006WR005128
  • Surkan, A.J., 1969. Synthetic hydrographs: effects of network geometry. Water Resources Research, 5 (1), 112–128. doi:10.1029/WR005i001p00112
  • Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33 (2), 309–319. doi:10.1029/96WR03137
  • Wang, M. and Hjelmfelt, A.T., 1998. DEM based overland flow routing modeling. Journal of Hydrologic Engineering, 3 (1), 1–8. doi:10.1061/(ASCE)1084-0699(1998)3:1(1)
  • Wooding, R.A., 1965. A hydraulic model for the catchment-stream problem: I. Kinematic-wave theory. Journal of Hydrology, 3 (3–4), 254–267. doi:10.1016/0022-1694(65)90084-3
  • Zhou, Q. and Liu, X., 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science, 16 (8), 819–842. doi:10.1080/13658810210149425
  • Zhou, Q., Liu, X., and Sun, Y., 2006. Terrain complexity and uncertainties in grid-based digital terrain analysis. International Journal of Geographical Information Science, 20 (10), 1137–1147. doi:10.1080/13658810600816573
  • Zhou, Q., Pilesjö, P., and Chen, Y., 2011. Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research, 47, W07522. doi:10.1029/2010WR009961

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.