950
Views
42
CrossRef citations to date
0
Altmetric
Articles

A CA-based land system change model: LANDSCAPE

, , & ORCID Icon
Pages 1798-1817 | Received 18 Aug 2016, Accepted 01 Apr 2017, Published online: 13 Apr 2017

References

  • Barredo, J.I., et al., 2003. Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64 (3), 145–160. doi:10.1016/S0169-2046(02)00218-9
  • Barredo, J.I., et al., 2004. Modelling future urban scenarios in developing countries: an application case study in Lagos, Nigeria. Environment and Planning B: Planning and Design, 31, 65–84. doi:10.1068/b29103
  • Batty, M. and Xie, Y., 1994. From cells to cities. Environment and Planning B: Planning and Design, 21 (7), S31–48. doi:10.1068/b21S031
  • Bellotti, T. and Crook, J., 2009. Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications, 36 (2), 3302–3308. doi:10.1016/j.eswa.2008.01.005
  • Britz, W., Verburg, P.H., and Leip, A., 2011. Modelling of land cover and agricultural change in Europe: combining the CLUE and CAPRI-Spat approaches. Agriculture, Ecosystems & Environment, 142 (1–2), 40–50. doi:10.1016/j.agee.2010.03.008
  • Chen, Y., et al. 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28 (2), 234–255. doi:10.1080/13658816.2013.831868
  • Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29 (3), 475–497. doi:10.1080/13658816.2014.987779
  • Doswell, C.A.I., Davies-Jones, R., and Keller, D.L., 1990. On summary measures of skill in rare event forecasting based on contingency tables. Weather and Forecasting, 5, 576–585. doi:10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2
  • Foley, J.A., et al., 2005. Global consequences of land use. Science, 309 (5734), 570–574. doi:10.1126/science.1111772
  • Geertman, S., Hagoort, M., and Ottens, H., 2007. Spatial‐temporal specific neighbourhood rules for cellular automata land‐use modelling. International Journal of Geographical Information Science, 21 (5), 547–568. doi:10.1080/13658810601064892
  • He, C., et al., 2013. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata. Landscape and Urban Planning, 113, 78–89. doi:10.1016/j.landurbplan.2013.01.004
  • Hellmann, F. and Verburg, P.H., 2011. Spatially explicit modelling of biofuel crops in Europe. Biomass and Bioenergy, 35 (6), 2411–2424. doi:10.1016/j.biombioe.2008.09.003
  • Hiyoshi, H., et al., 2014. Pedestrian movement model based on voronoi cellular automata. Transportation Research Procedia, 2, 336–343. doi:10.1016/j.trpro.2014.09.027
  • Huang, B., et al., 2009. Land-use-change modeling using unbalanced support-vector machines. Environment and Planning B: Planning and Design, 36, 398–416. doi:10.1068/b33047
  • Jantz, C.A., et al., 2010. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34 (1), 1–16. doi:10.1016/j.compenvurbsys.2009.08.003
  • Ke, X., Qi, L., and Zeng, C., 2015. A partitioned and asynchronous cellular automata model for urban growth simulation. International Journal of Geographical Information Science, 30 (4), 637–659. doi:10.1080/13658816.2015.1084510
  • Khan, M.A. and Syed, M.N.A., 2015. Image processing techniques for automatic detection of tumor in human brain using SVM. Ijarcce, 4 (4), 541–544. doi:10.17148/IJARCCE.2015.44125
  • Li, X., et al., 2013. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 130, 106–116. doi:10.1016/j.jenvman.2013.08.055
  • Li, X., et al. forthcoming. A new global land-use and land-cover change product at a 1-km resolution for 2010–2100 based on human-environment interactions. Annals of the American Association of Geographers.
  • Li, X., He, J., and Liu, X., 2009. Intelligent GIS for solving high‐dimensional site selection problems using ant colony optimization techniques. International Journal of Geographical Information Science, 23 (4), 399–416. doi:10.1080/13658810801918491
  • Liu, J., et al., 2010a. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20 (4), 483–494. doi:10.1007/s11442-010-0483-4
  • Liu, X., et al., 2008a. A bottom‐up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 22(11–12), 1247–1269. doi:10.1080/13658810701757510
  • Liu, X., et al., 2008b. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211 (1–2), 169–181. doi:10.1016/j.ecolmodel.2007.08.024
  • Liu, X., et al., 2010b. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24 (5), 783–802. doi:10.1080/13658810903270551
  • Liu, X., et al., 2014. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. International Journal of Geographical Information Science, 28 (1), 148–163. doi: 10.1080/13658816.2013.831097
  • Liu, X., et al. forthcoming. An integrated model for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning.
  • Lu, C.-J., Lee, T.-S., and Chiu, -C.-C., 2009. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47 (2), 115–125. doi:10.1016/j.dss.2009.02.001
  • Poelmans, L. and Van Rompaey, A., 2010. Complexity and performance of urban expansion models. Computers, Environment and Urban Systems, 34 (1), 17–27. doi:10.1016/j.compenvurbsys.2009.06.001
  • Pontius, R.G., Shusas, E., and Mceachern, M., 2004. Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment, 101 (2–3), 251–268. doi:10.1016/j.agee.2003.09.008
  • Renwick, A., et al., 2013. Policy reform and agricultural land abandonment in the EU. Land Use Policy, 30 (1), 446–457. doi:10.1016/j.landusepol.2012.04.005
  • Rykiel, E.J., 1996. Testing ecological models: the meaning of validation. Ecological Modelling, 90, 229–244. doi:10.1016/0304-3800(95)00152-2
  • Sant, I., et al., 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108–122. doi:10.1016/j.landurbplan.2010.03.001
  • Schaldach, R., et al., 2011. An integrated approach to modelling land-use change on continental and global scales. Environmental Modelling & Software, 26 (8), 1041–1051. doi:10.1016/j.envsoft.2011.02.013
  • Seto, K.C., Guneralp, B., and Hutyra, L.R., 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109 (40), 16083–16088. doi:10.1073/pnas.1211658109
  • Souty, F., et al., 2012. The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use. Geoscientific Model Development, 5, 1297–1322. doi:10.5194/gmd-5-1297-2012
  • Strck, J., Schulp, C.J.E., and Verburg, P.H., 2015. Spatio-temporal dynamics of regulating ecosystem services in Europe – the role of past and future land use change. Applied Geography, 63, 121–135. doi:10.1016/j.apgeog.2015.06.009
  • Thapa, R.B. and Murayama, Y., 2011. Urban growth modeling of Kathmandu metropolitan region, Nepal. Computers, Environment and Urban Systems, 35 (1), 25–34. doi:10.1016/j.compenvurbsys.2010.07.005
  • van Asselen, S. and Verburg, P.H., 2013. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Global Change Biology, 19 (12), 3648–3667. doi:10.1111/gcb.12331
  • van Vliet, J., et al., 2013. Measuring the neighbourhood effect to calibrate land use models. Computers, Environment and Urban Systems, 41, 55–64. doi:10.1016/j.compenvurbsys.2013.03.006
  • Van Vliet, J., Bregt, A.K., and Hagen-Zanker, A., 2011. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222 (8), 1367–1375. doi:10.1016/j.ecolmodel.2011.01.017
  • Veerbeek, W., et al., 2015. Enhancing the calibration of an urban growth model using a memetic algorithm. Computers, Environment and Urban Systems, 50, 53–65. doi:10.1016/j.compenvurbsys.2014.11.003
  • Verburg, P.H. and Overmars, K.P., 2009. Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecology, 24 (9), 1167–1181. doi:10.1007/s10980-009-9355-7
  • Verburg, P.H., Tabeau, A., and Hatna, E., 2013. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: a study for land use in Europe. Journal of Environmental Management, 127 (Suppl), S132–144. doi:10.1016/j.jenvman.2012.08.038
  • Visser, H. and de Nijs, T., 2006. The map comparison kit. Environmental Modelling & Software, 21 (3), 346–358. doi:10.1016/j.envsoft.2004.11.013
  • White, R. and Engelen, G, 1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment And Planning A, 25 (8), 1175–1199. doi:10.1068/a251175
  • White, R. and Engelen, G., 1997. Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B: Planning and Design, 24, 235–246. doi:10.1068/b240235
  • Xie, Y., 1996. A generalized model for cellular urban dynamics. Geographical Analysis, 28, 350–373. doi:10.1111/j.1538-4632.1996.tb00940.x
  • Zhang, Y., et al., 2015. Self-modifying CA model using dual ensemble Kalman filter for simulating urban land-use changes. International Journal of Geographical Information Science, 29 (9), 1612–1631. doi:10.1080/13658816.2015.1037305

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.