1,540
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Generating urban road intersection models from low-frequency GPS trajectory data

, , , , , & show all
Pages 2337-2361 | Received 31 Jul 2017, Accepted 05 Aug 2018, Published online: 27 Aug 2018

References

  • Ahmed, M., et al., 2015. A comparison and evaluation of map construction algorithms using vehicle tracking data. Geoinformatica, 19 (3), 601–632. doi:10.1007/s10707-014-0222-6
  • Ahmed, M. and Wenk, C., 2012. Constructing street networks from GPS trajectories. In: 20th annual European symposium on algorithms, 10–12 September. Ljubljana, Slovenia, Berlin, Heidelberg: Springer, 60–71.
  • Biagioni, J. and Eriksson, J., 2012. Map inference in the face of noise and disparity. In: Proceedings of the 20th international conference on advances in geographic information systems, 6–9 November. Redondo Beach, CA: ACM, 79–88.
  • Bruntrup, R., et al., 2005. Incremental map generation with GPS traces. In: Proceedings of the 8th international IEEE conference on intelligent transportation systems, 13–16 September. Vienna, Austria: IEEE, 413–418.
  • Cao, L. and Krumm, J., 2009. From GPS traces to a routable road map. In: Proceedings of 17th ACM SIGSPATIAL international conference on advances in geographic information systems, 4–6 November. Seattle Washington, New York: ACM, 3–12.
  • Davies, D.L. and Bouldin, D.W., 1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1 (2), 224–227.
  • Davies, J.J., et al., 2006. Scalable, distributed, real-time map generation. IEEE Pervasive Computing, 5 (4), 47–54. doi:10.1109/MPRV.2006.83
  • Deng, M., et al., 2011. An adaptive spatial clustering algorithm based on Delaunay triangulation. Computers Environment & Urban Systems, 35 (4), 320–332. doi:10.1016/j.compenvurbsys.2011.02.003
  • Fathi, A. and Krumm, J., 2010. Detecting road intersections from GPS traces. In: International conference on geographic information science, 14–17 September. Zurich, Switzerland, Berlin, Heidelberg: Springer, 56–69. Thesis (PhD)
  • Ibanez-Guzman, J., et al., 2010. Vehicle to vehicle communications applied to road intersection safety, field results. In: International IEEE conference on intelligent transportation systems, 19–22 September. Funchal Portugal: IEEE, 192–197.
  • Jenelius, E. and Koutsopoulos, H.N., 2013. Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B: Methodological, 53 (4), 64–81. doi:10.1016/j.trb.2013.03.008
  • John, S., et al., 2017. Deriving incline values for street networks from voluntarily collected GPS traces. Cartography & Geographic Information Science, 44 (2), 152–169. doi:10.1080/15230406.2016.1190300
  • Karagiorgou, S. and Pfoser, D., 2012. On vehicle tracking data-based road network generation. In: International conference on advances in geographic information systems, 6–9 November. Redondo Beach California, New York: ACM, 89–98.
  • Karagiorgou, S., Pfoser, D., and Skoutas, D., 2013. Segmentation-based road network construction. In: Proceedings of 21st ACM SIGSPATIAL international conference on advances in geographic information systems, 5–8 November. Orlando, FL: ACM, 460–463.
  • Kuntzsch, C., Sester, M., and Brenner, C., 2016. Generative models for road network reconstruction. International Journal of Geographical Information Science, 30 (5), 1012–1039. doi:10.1080/13658816.2015.1092151
  • Li, J., et al., 2012. Integrated use of spatial and semantic relationships for extracting road networks from floating car data. International Journal of Applied Earth Observation and Geoinformation, 19 (1), 238–247. doi:10.1016/j.jag.2012.05.013
  • Li, L., et al., 2017. Extraction of road intersections from GPS traces based on the dominant orientations of roads. International Journal of Geo-Information, 6 (12), 403–418. doi: 10.3390/ijgi6120403.
  • Müllner, D., 2013. Fastcluster: fast hierarchical, agglomerative clustering routines for R and Python. Journal of Statistical Software, 53 (9), 1–18. doi:10.18637/jss.v053.i09
  • Munoz-Organero, M., Ruiz-Blaquez, R., and Sánchez-Fernández, L., 2018. Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Computers, Environment and Urban Systems, 68, 1–8. doi:10.1016/j.compenvurbsys.2017.09.005.
  • Ord, J.K. and Getis, A., 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27 (4), 286–306. doi:10.1111/j.1538-4632.1995.tb00912.x
  • Quartieri, J., et al., 2010. Traffic noise impact in road intersections. International Journal of Energy and Environment, 4 (1), 1–8.
  • Rogers, S., 2000. Creating and evaluating highly accurate maps with probe vehicles. In: Proceedings of IEEE intelligent transportation systems, 1–3 October. Dearborn, MI: IEEE, 125–130.
  • Schroedl, S., et al., 2004. Mining GPS traces for map refinement. Data Mining and Knowledge Discovery, 9 (1), 59–87. doi:10.1023/B:DAMI.0000026904.74892.89
  • Shi, W., Shen, S., and Liu, Y., 2009. Automatic generation of road network map from massive GPS, vehicle trajectories. In: proceeding of 12th international IEEE conference on intelligent transportation systems, 4–7 October. St. Louis, MO: IEEE, 1–6.
  • Tang, L., et al., 2015. Lane-level road information mining from vehicle GPS trajectories based on naïve Bayesian classification. ISPRS International Journal of Geo-Information, 4 (4), 2660–2680. doi:10.3390/ijgi4042660
  • Tang, L., et al., 2016. CLRIC: collecting lane-based road information via crowdsourcing. IEEE Transactions on Intelligent Transportation Systems, 17 (9), 2552–2562. doi:10.1109/TITS.2016.2521482
  • Tang, L., et al., 2017. A road map refinement method using Delaunay triangulation for big trace data. ISPRS International Journal of Geo-Information, 6 (2), 45–57. doi:10.3390/ijgi6020045
  • Uduwaragoda, E.R.I.A.C.M., Perera, A.S., and Dias, S.A.D., 2013. Generating lane level road data from vehicle trajectories using Kernel density estimation. In: International IEEE Conference on Intelligent Transportation Systems, 6–9 October. The Hague, The Netherlands: IEEE, 384–391.
  • Verbeek, J.J., Vlassis, N., and Kröse, B., 2002. A k-segments algorithm for finding principal curves. Pattern Recognition Letters, 23 (8), 1009–1017. doi:10.1016/S0167-8655(02)00032-6
  • Vlachos, M., Gunopoulos, D., and Kollios, G., 2002. Discovering similar multidimensional trajectories. In: International conference on data engineering, 26 February-1 March. San Jose, CA: IEEE, 673–684.
  • Wang, J., et al., 2015. A novel approach for generating routable road maps from vehicle GPS traces. International Journal of Geographical Information Science, 29 (1), 69–91. doi:10.1080/13658816.2014.944527
  • Wang, J., et al., 2017. Automatic intersection and traffic rule detection by mining motor-vehicle GPS trajectories. Computers, Environment and Urban Systems, 64, 19–29. doi:10.1016/j.compenvurbsys.2016.12.006
  • Winden, K.V., Biljecki, F., and Spek, S.V.D., 2016. Automatic update of road attributes by mining GPS tracks. Transactions in GIS, 20 (5), 664–683. doi:10.1111/tgis.2016.20.issue-5
  • Wu, J., et al., 2013. Detecting road intersections from coarse-gained GPS traces based on clustering. Journal of Computers, 8 (11), 2959–2965. doi:10.4304/jcp.8.11.2959-2965
  • Xie, X., et al., 2017. Detecting road intersections from GPS traces using longest common subsequence algorithm. ISPRS International Journal of Geo-Information, 6 (1), 1–15. doi:10.3390/ijgi6010001
  • Yang, X., et al., 2017. Automatic change detection in lane-level road networks using GPS trajectories. International Journal of Geographical Information Science, 32 (3), 601–621. doi:10.1080/13658816.2017.1402913
  • Zhang, L., Thiemann, F., and Sester, M., 2010. Integration of GPS traces with road map. In: International workshop on computational transportation science, 2–5 November. San Jose, CA: ACM, 17–22.
  • Zheng, K., et al., 2012. Reducing uncertainty of low-sampling-rate trajectories, In: IEEE, international conference on data engineering, 1–5 April. Washington, DC: IEEE, 1144–1155.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.