1,351
Views
49
CrossRef citations to date
0
Altmetric
Research Articles

Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 55-80 | Received 23 Mar 2018, Accepted 17 Aug 2018, Published online: 13 Sep 2018

References

  • Abolhasani, S., et al., 2016. Simulating urban growth under planning policies through parcel-based cellular automata (ParCA) model. International Journal of Geographical Information Science, 30 (11), 2276–2301. doi:10.1080/13658816.2016.1184271
  • Alaei Moghadam, S., Karimi, M., and Habibi, K., 2018. Simulating urban growth in a megalopolitan area using a patch‐based cellular automata. Transactions in GIS, 22, 249–268. doi:10.1111/tgis.2018.22.issue-1
  • Ali, A.K., 2008. Greenbelts to contain urban growth in Ontario, Canada: promises and prospects. Planning, Practice & Research, 23 (4), 533–548. doi:10.1080/02697450802522889
  • Allison, P.D., 2012. Survival analysis using SAS: a practical guide. Cary: SAS Institute Inc.
  • An, L. and Brown, D.G., 2008. Survival analysis in land change science: integrating with GIScience to address temporal complexities. Annals of the Association of American Geographers, 98 (2), 323–344. doi:10.1080/00045600701879045
  • Bengston, D. and Youn, Y.-C., 2006. Urban containment policies and the protection of natural areas: the case of Seoul’s greenbelt. Ecology and Society, 11 (1), 3. doi:10.5751/ES-01504-110103
  • Carter, T., 2009. Developing conservation subdivisions: ecological constraints, regulatory barriers, and market incentives. Landscape and Urban Planning, 92 (2), 117–124. doi:10.1016/j.landurbplan.2009.03.004
  • Chen, B.Y., et al., 2017a. Measuring place-based accessibility under travel time uncertainty. International Journal of Geographical Information Science, 31 (4), 783–804. doi:10.1080/13658816.2016.1238919
  • Chen, Y., et al., 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28 (2), 234–255. doi:10.1080/13658816.2013.831868
  • Chen, Y., et al., 2016. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landscape and Urban Planning, 152, 59–71. doi:10.1016/j.landurbplan.2016.03.011
  • Chen, Y., et al., 2010. An agent-based model for optimal land allocation (AgentLA) with a contiguity constraint. International Journal of Geographical Information Science, 24 (8), 1269–1288. doi:10.1080/13658810903401024
  • Chen, Z., et al., 2017b. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 55 (11), 6305–6319. doi:10.1109/TGRS.2017.2725917
  • Coiacetto, E., 2007. Residential sub-market targeting by developers in Brisbane. Urban Policy and Research, 25 (2), 257–274. doi:10.1080/08111140701344833
  • Deuskar, C., Baker, J.L., and Mason, D., 2015. East Asia’s changing urban landscape: measuring a decade of spatial growth. Washington, DC: World Bank Publications.
  • Du, G., et al., 2018. A comparative approach to modelling multiple urban land use changes using tree-based methods and cellular automata: the case of Greater Tokyo Area. International Journal of Geographical Information Science, 32 (4), 757–782. doi:10.1080/13658816.2017.1410550
  • Du, S., Van Rompaey, A., and Shi, P., 2015. A dual effect of urban expansion on flood risk in the Pearl River Delta (China) revealed by land-use scenarios and direct runoff simulation. Natural Hazards, 77 (1), 111–128. doi:10.1007/s11069-014-1583-8
  • Feng, Y., 2017. Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules. International Journal of Geographical Information Science, 31 (6), 1198–1219.
  • Feng, Y., Liu, Y., and Liu, Y., 2017. Spatially explicit assessment of land ecological security with spatial variables and logistic regression modeling in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 31 (9), 2235–2249. doi:10.1007/s00477-016-1330-7
  • García, A.M., et al., 2012. A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Computers, Environment and Urban Systems, 36 (4), 291–301. doi:10.1016/j.compenvurbsys.2012.01.001
  • Ghavami, S.M., Taleai, M., and Arentze, T., 2017. An intelligent spatial land use planning support system using socially rational agents. International Journal of Geographical Information Science, 31 (5), 1022–1041. doi:10.1080/13658816.2016.1263306
  • Guan, Q., et al., 2016. A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures. International Journal of Geographical Information Science, 30 (3), 494–514. doi:10.1080/13658816.2015.1039538
  • Han, H., et al., 2009. Effectiveness of urban construction boundaries in Beijing: an assessment. Journal of Zhejiang University-Science A, 10 (9), 1285–1295. doi:10.1631/jzus.A0920317
  • He, Q., et al., 2018. Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China. Habitat International, 72, 57–65. doi:10.1016/j.habitatint.2016.11.006
  • Henderson, M., et al., 2003. Validation of urban boundaries derived from global night-time satellite imagery. International Journal of Remote Sensing, 24 (3), 595–609. doi:10.1080/01431160304982
  • Jebur, M.N., Pradhan, B., and Tehrany, M.S., 2015. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (2), 674–690. doi:10.1109/JSTARS.2014.2341276
  • Kong, L., et al., 2017. Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the beijing metropolitan region, China. Ecological Indicators, 82, 233–249. doi:10.1016/j.ecolind.2017.07.009
  • Li, X., et al., 2017a. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human–environment interactions. Annals of the American Association of Geographers, 107 (5), 1040–1059. doi:10.1080/24694452.2017.1303357
  • Li, X., et al., 2017b. A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Computers, Environment and Urban Systems, 65, 140–149. doi:10.1016/j.compenvurbsys.2017.06.001
  • Ligmann-Zielinska, A., Church, R.L., and Jankowski, P., 2008. Spatial optimization as a generative technique for sustainable multiobjective land‐use allocation. International Journal of Geographical Information Science, 22 (6), 601–622. doi:10.1080/13658810701587495
  • Lin, J. and Li, X., 2016. Conflict resolution in the zoning of eco-protected areas in fast-growing regions based on game theory. Journal of Environmental Management, 170, 177–185. doi:10.1016/j.jenvman.2015.11.036
  • Liu, X., et al., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94–116. doi:10.1016/j.landurbplan.2017.09.019
  • Liu, Y., Dai, L., and Xiong, H., 2015. Simulation of urban expansion patterns by integrating auto-logistic regression, Markov chain and cellular automata models. Journal of Environmental Planning and Management, 58 (6), 1113–1136. doi:10.1080/09640568.2014.916612
  • Liu, Y., et al., 2016. PSOLA: A heuristic land-use allocation model using patch-level operations and knowledge-informed rules. PloS one, 11 (6), e0157728. doi:10.1371/journal.pone.0146933
  • Long, H., et al., 2007. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. Journal of Environmental Management, 83 (3), 351–364. doi:10.1016/j.jenvman.2006.04.003
  • Long, Y., et al., 2013. Urban growth boundaries of the Beijing Metropolitan Area: comparison of simulation and artwork. Cities, 31, 337–348. doi:10.1016/j.cities.2012.10.013
  • Long, Y., et al., 2015. Evaluating the effectiveness of urban growth boundaries using human mobility and activity records. Cities, 46, 76–84. doi:10.1016/j.cities.2015.05.001
  • Ma, S., Li, X., and Cai, Y., 2017. Delimiting the urban growth boundaries with a modified ant colony optimization model. Computers, Environment and Urban Systems, 62, 146–155. doi:10.1016/j.compenvurbsys.2016.11.004
  • Mubarak, F.A., 2004. Urban growth boundary policy and residential suburbanization: Riyadh, Saudi Arabia. Habitat International, 28 (4), 567–591. doi:10.1016/j.habitatint.2003.10.010
  • Mustafa, A., et al., 2017. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69, 529–540. doi:10.1016/j.landusepol.2017.10.009
  • Mustafa, A., et al., 2018a. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156. doi:10.1016/j.compenvurbsys.2017.09.009
  • Mustafa, A., et al., 2018b. Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51 (1), 391–401. doi:10.1080/22797254.2018.1442179
  • Mustafa, A., et al., 2018c. A Time Monte Carlo method for addressing uncertainty in land-use change models. International Journal of Geographical Information Science, 1–17. doi:10.1080/13658816.2018.1503275
  • Nelson, A.C. and Duncan, J.B., 1995. Growth management principles and practices. Chicago: APA Planners Press.
  • Pickard, B., Gray, J., and Meentemeyer, R., 2017. Comparing quantity, allocation and configuration accuracy of multiple land change models. Land, 6 (3), 52. doi:10.3390/land6030052
  • Pinto, N., Antunes, A.P., and Roca, J., 2017. Applicability and calibration of an irregular cellular automata model for land use change. Computers, Environment and Urban Systems, 65, 93–102. doi:10.1016/j.compenvurbsys.2017.05.005
  • Pontius, R., et al., 2008. Comparing the input, output, and validation maps for several models of land change. The Annals of Regional Science, 42 (1), 11–37. doi:10.1007/s00168-007-0138-2
  • Rienow, A. and Goetzke, R., 2015. Supporting SLEUTH–enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66–81. doi:10.1016/j.compenvurbsys.2014.05.001
  • Santé-Riveira, I., et al., 2008. Algorithm based on simulated annealing for land-use allocation. Computers & Geosciences, 34 (3), 259–268. doi:10.1016/j.cageo.2007.03.014
  • Schwaab, J., et al., 2018. Improving the performance of genetic algorithms for land-use allocation problems. International Journal of Geographical Information Science, 32 (5), 907–930. doi:10.1080/13658816.2017.1419249
  • Shao, J., et al., 2015. An improved artificial bee Colony-Based approach for zoning protected ecological areas. PloS one, 10 (9), e0137880. doi:10.1371/journal.pone.0137880
  • Shi, K., et al., 2014. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sensing Letters, 5 (4), 358–366. doi:10.1080/2150704X.2014.905728
  • Smola, A. and Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing, 14 (3), 199–222. doi:10.1023/B:STCO.0000035301.49549.88
  • Srivastava, S., 2014. Weka: a tool for data preprocessing, classification, ensemble, clustering and association rule mining. International Journal of Computer Applications, 88 (10), 26–29. doi:10.5120/15389-3809
  • Tayyebi, A., Pijanowski, B.C., and Tayyebi, A.H., 2011. An urban growth boundary model using neural networks, GIS and radial parameterization: an application to Tehran, Iran. Landscape and Urban Planning, 100 (1), 35–44. doi:10.1016/j.landurbplan.2010.10.007
  • Wang, F. and Marceau, D.J., 2013. A patch‐based cellular automaton for simulating land‐use changes at fine spatial resolution. Transactions in GIS, 17 (6), 828–846. doi:10.1111/tgis.2013.17.issue-6
  • Xu, H. and Brown, D.G., 2017. Sensitivity of a stochastic land-cover change model to pixel versus polygonal land units. International Journal of Geographical Information Science, 31 (4), 738–762. doi:10.1080/13658816.2016.1231316
  • Yu, B., et al., 2014. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. International Journal of Geographical Information Science, 28 (11), 2328–2355. doi:10.1080/13658816.2014.922186
  • Yu, K., Wang, S., and Li, D., 2011. The negative approach to urban growth planning of Beijing, China. Journal of Environmental Planning and Management, 54 (9), 1209–1236. doi:10.1080/09640568.2011.564488
  • Zhang, H., et al., 2016. Simulating multi-objective land use optimization allocation using Multi-agent system—a case study in Changsha, China. Ecological Modelling, 320, 334–347. doi:10.1016/j.ecolmodel.2015.10.017
  • Zheng, X.-Q. and Lv, L.-N., 2016. A WOE method for urban growth boundary delineation and its applications to land use planning. International Journal of Geographical Information Science, 30 (4), 691–707. doi:10.1080/13658816.2015.1091461
  • Zhou, R., et al., 2016. The delimitation of urban growth boundaries using the CLUE-S land-use change model: study on Xinzhuang Town, Changshu City, China. Sustainability, 8 (11), 1182. doi:10.3390/su8111182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.