1,052
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1196-1223 | Received 02 May 2018, Accepted 14 Dec 2018, Published online: 09 Jan 2019

References

  • Ankerst, M., et al., 1999. OPTICS: ordering points to identify the clustering structure. In: ed. Proceedings of the 1999 ACM SIGMOD international conference on management of data, 31 May–03 June. Philadelphia, Pennsylvania, USA, 49–60. New York, NY: ACM.
  • Cai, L., et al., 2018. Integrating spatial and temporal contexts into a factorization model for POI recommendation. International Journal of Geographical Information Science, 32 (3), 524–546. doi:10.1080/13658816.2017.1400550
  • Campello, R.J., et al., 2015. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 10 (1), 1–51. doi:10.1145/2733381
  • Campello, R.J., Moulavi, D., and Sander, J., 2013. Density-based clustering based on hierarchical density estimates. In: J. Pei, V. S. Tseng, L. Cao., H. Motoda, and G. Xu, eds. PAdvances in Knowledge Discovery and Data Mining. PAKDD. Lecture Notes in Computer Science, 7819. Berlin: Springer.
  • Chowdhury, A.R., Mollah, M.E., and Rahman, M.A., 2010. An efficient method for subjectively choosing parameter ‘k’automatically in VDBSCAN (Varied Density Based Spatial Clustering of Applications with Noise) algorithm. In: ed. The 2nd international conference on computer and automation engineering (ICCAE), 26–28 February. Singapore, 38–41. Piscataway: IEEE.
  • Donaldson, K., 2013. How big is your neighborhood? Using the AHS and GIS to determine the extent of your community [online]. Available from: https://www.census.gov/programs-surveys/ahs/research/working-papers/how_big_is_your_neighborhood.html [Accessed 30 April 2018].
  • Duckham, M., et al., 2008. Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recognition, 41 (10), 3224–3236. doi:10.1016/j.patcog.2008.03.023
  • Elbatta, M.T. and Ashour, W.M., 2013. A dynamic method for discovering density varied clusters. International Journal of Signal Processing, Image Processing, and Pattern Recognition, 6 (1), 123–134.
  • Ertöz, L., Steinbach, M., and Kumar, V., 2003. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: D. Barbara and C. Kamath, eds. Proceedings of the 2003 SIAM international conference on data mining, 1–3 May. San Francisco, CA, 47–58. Available from: https://epubs.siam.org/doi/book/10.1137/1.9781611972733?mobileUi=0
  • Ester, M., et al., 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In: E. Simoudis, J. Han, and U. Fayyad, eds. The second international conference on knowledge discovery and data mining (KDD), 2–4 August. Portland, Oregon, 226–231. Palo Alto: AAAI PRESS.
  • Gao, S., et al., 2014. Detecting origin-destination mobility flows from geotagged Tweets in greater Los Angeles area. In: M. Duckham, E. Pebesma, K. Stewart, and A. U. Frank, eds. The eighth international conference on geographic information science (GIScience’14), 24–26 September. Vienna, Austria. New York, NY: Springer.
  • Gao, S., 2015. Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile age. Spatial Cognition & Computation, 15 (2), 86–114. doi:10.1080/13875868.2014.984300
  • Gao, S., Janowicz, K., and Couclelis, H., 2017. Extracting urban functional regions from points of interest and human activities on location‐based social networks. Transactions in GIS, 21 (3), 446–467. doi:10.1111/tgis.2017.21.issue-3
  • Hu, Y., et al., 2015. Extracting and understanding urban areas of interest using geotagged photos. Computers, Environment and Urban Systems, 54, 240–254. doi:10.1016/j.compenvurbsys.2015.09.001
  • Huang, Q., 2017. Mining online footprints to predict user’s next location. International Journal of Geographical Information Science, 31 (3), 523–541. doi:10.1080/13658816.2016.1209506
  • Huang, Q., Cao, G., and Wang, C., 2014. From where do Tweets originate?-A GIS approach for user location inference. In: ed. Proceedings of the 7th ACM SIGSPATIAL international workshop on location-based social networks, 4 November. Dallas/Fort Worth, Texas. New York, NY: ACM.
  • Huang, Q. and Wong, D.W., 2015. Modeling and visualizing regular human mobility patterns with uncertainty: an example using Twitter data. Annals of the Association of American Geographers, 105 (6), 1179–1197. doi:10.1080/00045608.2015.1081120
  • Huang, Q. and Wong, D.W., 2016. Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us? International Journal of Geographical Information Science, 30, 1873–1898. doi:10.1080/13658816.2016.1145225
  • Hubert, L. and Arabie, P., 1985. Comparing partitions. Journal of Classification, 2 (1), 193–218. doi:10.1007/BF01908075
  • Jiang, S., et al., 2015. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Computers, Environment and Urban Systems, 53, 36–46. doi:10.1016/j.compenvurbsys.2014.12.001
  • Jurgens, D., 2013. That’s what friends are for: inferring location in online social media platforms based on social relationships. ICWSM, 13 (13), 273–282.
  • Kang, C., et al., 2012. Intra-urban human mobility patterns: an urban morphology perspective. Physica A: Statistical Mechanics and Its Applications, 391 (4), 1702–1717. doi:10.1016/j.physa.2011.11.005
  • Karami, A. and Johansson, R., 2014. Choosing DBSCAN parameters automatically using differential evolution. International Journal of Computer Applications, 91 (7), 1–11. doi:10.5120/15890-5059
  • Kwan, M.-P., 2013. Beyond space (as we knew it): toward temporally integrated geographies of segregation, health, and accessibility: space–time integration in geography and GIScience. Annals of the Association of American Geographers, 103 (5), 1078–1086. doi:10.1080/00045608.2013.792177
  • Lin, J. and Cromley, R.G., 2018. Inferring the home locations of Twitter users based on the spatiotemporal clustering of Twitter data. Transactions in GIS, 22 (1), 82–97. doi:10.1111/tgis.2018.22.issue-1
  • Liu, P., Zhou, D., and Wu, N., 2007. VDBSCAN: varied density based spatial clustering of applications with noise. In: ed. 2007 international conference on service systems and service management. Chengdu, China, 1–4. Piscataway: IEEE.
  • Liu, Y., et al., 2015. Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 105 (3), 512–530. doi:10.1080/00045608.2015.1018773
  • Luo, F., et al., 2016. Explore spatiotemporal and demographic characteristics of human mobility via Twitter: a case study of Chicago. Applied Geography, 70, 11–25. doi:10.1016/j.apgeog.2016.03.001
  • Mahmud, J., Nichols, J., and Drews, C., 2012. Where is this Tweet from? Inferring home locations of Twitter users. ICWSM, 12, 511–514.
  • Mathew, W., Raposo, R., and Martins, B., 2012. Predicting future locations with hidden Markov models. In: Proceedings of the 2012 ACM conference on ubiquitous computing, 911–918. New York, NY: ACM.
  • Mennis, J. and Guo, D., 2009. Spatial data mining and geographic knowledge discovery—an introduction. Computers, Environment and Urban Systems, 33 (6), 403–408. doi:10.1016/j.compenvurbsys.2009.11.001
  • Moreira, G., Santos, M.Y., and Moura-Pires, J., 2013. SNN input parameters: how are they related? In: Parallel and distributed systems (ICPADS), 2013 international conference on, Seoul, South Korea, 492–497. Piscataway: IEEE.
  • Morstatter, F., et al., 2013. Is the sample good enough? Comparing data from twitter’s streaming api with twitter’s firehose. In: Proceedings of the 7th International Conference on Weblogs and Social Media, ICWSM 2013, Jul 8 -11, Cambridge, MA, United States. Palo Alto: AAAI press.
  • Noulas, A., et al., 2012a. A tale of many cities: universal patterns in human urban mobility. PloS one, 7 (5), e37027. doi:10.1371/journal.pone.0037027
  • Noulas, A., et al., 2012b. Mining user mobility features for next place prediction in location-based services. In: ed. Data mining (ICDM), 2012 IEEE 12th international conference on, 10–13 December. Brussels, Belgium, 1038–1043. Piscataway: IEEE.
  • Parvez, A.W.M.M., 2012. Data set property based ‘K’in VDBSCAN clustering algorithm. World of Computer Science and Information Technology Journal (WCSIT), 2 (3), 115–119.
  • Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66 (336), 846–850. doi:10.1080/01621459.1971.10482356
  • Richardson, D.B., et al., 2013. Spatial turn in health research. Science, 339 (6126), 1390–1392. doi:10.1126/science.1232257
  • Santos, J.M. and Embrechts, M., 2009. On the use of the adjusted rand index as a metric for evaluating supervised classification. In: ed. International conference on artificial neural networks, 14–17 September. Limassol, Cyprus, 175–184. Berlin: Springer.
  • Shaw, S.-L., Tsou, M.-H., and Ye, X., 2016. Human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30 (9), 1687–1693. doi:10.1080/13658816.2016.1164317
  • Steiger, E., Albuquerque, J.P., and Zipf, A., 2015. An advanced systematic literature review on spatiotemporal analyses of Twitter data. Transactions in GIS, 19 (6), 809–834. doi:10.1111/tgis.12132
  • Walde, S.S.I., 2006. Experiments on the automatic induction of German semantic verb classes. Computational Linguistics, 32 (2), 159–194. doi:10.1162/coli.2006.32.2.159
  • Wang, S., Liu, Y., and Shen, B., 2016. MDBSCAN: multi-level density based spatial clustering of applications with noise. In: ed. Proceedings of the 11th international knowledge management in organizations conference on the changing face of knowledge management impacting society, 25–28 July. Hagen, Germany, 21. New York, NY: ACM.
  • Xu, Y., et al., 2016. Another tale of two cities: understanding human activity space using actively tracked cellphone location data. Annals of the American Association of Geographers, 106 (2), 489–502.
  • Yeung, K.Y. and Ruzzo, W.L., 2001. Details of the adjusted rand index and clustering algorithms, supplement to the paper an empirical study on principal component analysis for clustering gene expression data. Bioinformatics, 17 (9), 763–774.
  • Yuan, J., Zheng, Y., and Xie, X., 2012. Discovering regions of different functions in a city using human mobility and POIs. In: ed. Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, 23–25 July. Edmonton, AB, Canada, 186–194. New York, NY: ACM.
  • Zandbergen, P.A., 2009. Accuracy of iPhone locations: A comparison of assisted GPS, WiFi and cellular positioning. Transactions in GIS, 13, 5–25. doi:10.1111/tgis.2009.13.issue-s1
  • Zhou, C., et al., 2004. Discovering personal gazetteers: an interactive clustering approach. In: ed. Proceedings of the 12th annual ACM international workshop on geographic information systems, 12–13 November. Washington, DC, USA, 266–273. New York, NY: ACM.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.