1,378
Views
84
CrossRef citations to date
0
Altmetric
Research Articles

Examining the sensitivity of spatial scale in cellular automata Markov chain simulation of land use change

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 1040-1061 | Received 30 Jun 2018, Accepted 08 Jan 2019, Published online: 18 Feb 2019

References

  • Al-Sharif, A.A.A. and Pradhan, B., 2014. Monitoring and predicting land use change in Tripoli metropolitan city using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences, 7 (10), 4291–4301. doi:10.1007/s12517-013-1119-7
  • Altartouri, A., Nurminen, L., and Jolma, A., 2015. Spatial neighborhood effect and scale issues in the calibration and validation of a dynamic model of phragmites australis distribution - A cellular automata and machine learning approach. Environmental Modelling and Software, 71, 15–29. doi:10.1016/j.envsoft.2015.04.010
  • Balzter, H., Braun, P.W., and Köhler, W., 1998. Cellular automata models for vegetation dynamics. Ecological Modelling, 107 (2), 113–125. doi:10.1016/S0304-3800(97)00202-0
  • Chen, Y.M., et al., 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. International Journal of Geographical Information Science, 28 (2), 234–255. doi:10.1080/13658816.2013.831868
  • Chen, Y.M., Liu, X.P., and Li, X., 2017. Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. International Journal of Geographical Information Science, 31 (12), 2480–2504. doi:10.1080/13658816.2017.1367004
  • Dahal, K.R. and Chow, T.E., 2015. Characterization of neighborhood sensitivity of an irregular cellular automata model of urban growth. International Journal of Geographical Information Science, 29 (3), 475–497. doi:10.1080/13658816.2014.987779
  • Dietzel, C. and Clarke, K., 2006. The effect of disaggregating land use categories in cellular automata during model calibration and forecasting. Computers Environment and Urban Systems, 30 (1), 78–101. doi:10.1016/j.compenvurbsys.2005.04.001
  • Feng, Y.J., 2017. Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules. International Journal of Geographical Information Science, 31 (6), 1198–1219.
  • Feng, Y.J. and Liu, Y., 2013. A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27 (3), 449–466. doi:10.1080/13658816.2012.695377
  • Fuglsang, M., Munier, B., and Hansen, H.S., 2013. Modelling land-use effects of future urbanization using cellular automata: an Eastern Danish case. Environmental Modelling and Software, 50, 1–11. doi:10.1016/j.envsoft.2013.08.003
  • Guan, D.J., et al., 2011. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecological Modelling, 222 (20–22), 3761–3772. doi:10.1016/j.ecolmodel.2011.09.009
  • Halmy, M.W.A., et al., 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. doi:10.1016/j.apgeog.2015.06.015
  • Hyandye, C. and Martz, L.W., 2017. A Markovian and cellular automata land-use change predictive model of the usangu catchment. International Journal of Remote Sensing, 38 (1), 64–81. doi:10.1080/01431161.2016.1259675
  • Jenerette, G.D. and Wu, J.G., 2001. Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landscape Ecology, 16 (7), 611–626. doi:10.1023/A:1013170528551
  • Joyce, A.P. and Leung, S.S., 2013. Use of response surface methods and path of steepest ascent to optimize ligand-binding assay sensitivity. Journal of Immunological Methods, 392 (1–2), 12–23. doi:10.1016/j.jim.2013.02.019
  • Kamusoko, C., et al., 2009. Rural sustainability under threat in Zimbabwe - simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29 (3), 435–447. doi:10.1016/j.apgeog.2008.10.002
  • Kocabas, V. and Dragicevic, S., 2006. Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers Environment and Urban Systems, 30 (6), 921–953. doi:10.1016/j.compenvurbsys.2006.01.001
  • Li, X., et al., 2016. A cellular automata downscaling based 1km global land use datasets (2010–2100). Science Bulletin, 61 (21), 1651–1661. doi:10.1007/s11434-016-1148-1
  • Li, X., et al., 2017. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31 (8), 1606–1629. doi:10.1080/13658816.2017.1301457
  • Li, X. and Yeh, A.G.-O., 2001. Calibration of cellular automata by using neural networks for the simulation of complex urban systems. Environment and Planning A, 33 (8), 1445–1462. doi:10.1068/a33210
  • Li, X. and Yeh, A.G.-O., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16 (4), 323–343. doi:10.1080/13658810210137004
  • Li, X. and Yeh, A.G.-O., 2004. Data mining of cellular automata’s transition rules. International Journal of Geographical Information Science, 18 (8), 723–744. doi:10.1080/13658810410001705325
  • Liu, X., et al., 2008. A bottom-up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 22 (11–12), 1247–1269. doi:10.1080/13658810701757510
  • Liu, X., et al., 2010. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24 (5), 783–802. doi:10.1080/13658810903270551
  • McGarigal, K., 2015. Fragstats help. Amherst, University of Massachusetts. Available from: http://www.umass.edu/landeco/research/fragstats/documents/fragstats.help.4.2.pdf [Accessed 28 June 2018]
  • Menard, A. and Marceau, D.J., 2005. Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B-Planning and Design, 32 (5), 693–714. doi:10.1068/b31163
  • Messina, J.P., et al., 2008. Complex systems models and the management of error and uncertainty. Journal of Land Use Science, 3 (1), 11–25. doi:10.1080/17474230802047989
  • Mondal, P. and Southworth, J., 2010. Evaluation of conservation interventions using a cellular automata-Markov model. Forest Ecology and Management, 260 (10), 1716–1725. doi:10.1016/j.foreco.2010.08.017
  • Moreno, N., Wang, F., and Marceau, D.J., 2009. Implementation of a dynamic neighborhood in a land-use vector-based cellular automata. Computers Environment and Urban Systems, 33 (1), 44–54. doi:10.1016/j.compenvurbsys.2008.09.008
  • Pan, Y., et al., 2010. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers Environment and Urban Systems, 34 (5), 400–408. doi:10.1016/j.compenvurbsys.2010.03.003
  • Pontius, G.R. and Malanson, J., 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science, 19 (2), 243–265. doi:10.1080/13658810410001713434
  • Salap-Ayca, S., et al., 2018. A meta-modeling approach for spatio-temporal uncertainty and sensitivity analysis: an application for a cellular automata-based urban growth and land-use change model. International Journal of Geographical Information Science, 32 (4), 637–662. doi:10.1080/13658816.2017.1406944
  • Samat, N., 2006. Characterizing the scale sensitivity of the cellular automata simulated urban growth: a case study of the Seberang Perai region, Penang State, Malaysia. Computers Environment and Urban Systems, 30 (6), 905–920. doi:10.1016/j.compenvurbsys.2005.11.002
  • Shan, J., Alkheder, S., and Wang, J., 2008. Genetic algorithms for the calibration of cellular automata urban growth modeling. Photogrammetric Engineering and Remote Sensing, 74 (10), 1267–1277. doi:10.14358/PERS.74.10.1267
  • Torrens, P.M. and O’Sullivan, D., 2001. Cellular automata and urban simulation: where do we go from here? Environment and Planning B: Planning and Design, 28 (2), 163–168. doi:10.1068/b2802ed
  • Tran, D.T., Hertog, M., and Nicolai, B.M., 2016. Hierarchical response surface methodology for optimization of postharvest treatments to maintain quality of litchi cv. ‘Thieu’ during cold storage. Postharvest Biology and Technology, 117, 94–101. doi:10.1016/j.postharvbio.2016.01.006
  • Valbuena, D., et al., 2010. An agent-based approach to model land-use change at a regional scale. Landscape Ecology, 25 (2), 185–199. doi:10.1007/s10980-009-9380-6
  • van Vliet, J., et al., 2016. A review of current calibration and validation practices in land-change modeling. Environmental Modelling and Software, 82, 174–182. doi:10.1016/j.envsoft.2016.04.017
  • van Vliet, J., Bregt, A.K., and Hagen-Zanker, A., 2011. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222 (8), 1367–1375. doi:10.1016/j.ecolmodel.2011.01.017
  • Verburg, P.H. and Veldkamp, A., 2005. Introduction to the special issue on spatial modeling to explore land use dynamics. International Journal of Geographical Information Science, 19 (2), 99–102. doi:10.1080/13658810410001713362
  • Wang, F., et al., 2011a. Identifying dominant factors for the calibration of a land-use cellular automata model using rough set theory. Computers Environment and Urban Systems, 35 (2), 116–125. doi:10.1016/j.compenvurbsys.2010.10.003
  • Wang, Y., et al., 2011b. Scale sensitive analysis of cellular automata model. Acta Scientiarum Naturalium Universitatis Pekinensis, 47 (4), 750–758.
  • White, R. and Engelen, G., 1997. Cellular automata as the basis of integrated dynamic regional modelling. Environment and Planning B: Planning and Design, 24 (2), 235–246. doi:10.1068/b240235
  • Wu, F.L., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818. doi:10.1080/13658810210157769
  • Wu, H., et al., 2012. Quantifying and analyzing neighborhood configuration characteristics to cellular automata for land use simulation considering data source error. Earth Science Informatics, 5 (2), 77–86. doi:10.1007/s12145-012-0097-8
  • Wu, H., et al., 2013a. Examining the satellite-detected urban land use spatial patterns using multidimensional fractal dimension indices. Remote Sensing, 5 (10), 5152–5172. doi:10.3390/rs5105152
  • Wu, H., et al., 2013b. Scale sensitive of cellular automata model for the simulation of land use change based on orthogonal experiment. Scientia Geographica Sinica, 33 (10), 1252–1258.
  • Wu, H., et al., 2014. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. International Journal of Applied Earth Observation and Geoinformation, 32, 67–78. doi:10.1016/j.jag.2014.03.019
  • Zhang, W. and Liu, Y., 2015. Main factor sensitivity analysis based on response surface model updating of port crane structure. Journal of Coastal Research, 166–172. doi:10.2112/SI73-029.1
  • Zou, Z.-H., Yun, Y., and Sun, J.-N., 2006. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18 (5), 1020–1023. doi:10.1016/S1001-0742(06)60032-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.