1,823
Views
70
CrossRef citations to date
0
Altmetric
Research Articles

Simulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata

ORCID Icon, &
Pages 1960-1983 | Received 07 Aug 2018, Accepted 25 Mar 2019, Published online: 05 Apr 2019

References

  • Aburas, M.M., et al., 2016. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. International Journal of Applied Earth Observation and Geoinformation, 52, 380–389. doi:10.1016/j.jag.2016.07.007.
  • Aburas, M.M., et al., 2017. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio. International Journal of Applied Earth Observation and Geoinformation, 59, 65–78. doi:10.1016/j.jag.2017.03.006.
  • Angel, S., et al., 2011. The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Progress in Planning, 75 (2), 53–107. doi:10.1016/j.progress.2011.04.001.
  • Arsanjani, J.J., et al., 2013a. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275. doi:10.1016/j.jag.2011.12.014.
  • Arsanjani, J.J., Helbich, M., and de Noronha Vaz, E., 2013b. Spatiotemporal simulation of urban growth patterns using agent-based modeling: the case of Tehran. Cities, 32, 33–42. doi:10.1016/j.cities.2013.01.005
  • Auckland Regional Council, 2010. A brief history of Auckland’s urban form. Auckland Council: Scientific report. Available from: http://knowledgeauckland.org.nz/assets/publications/Brief_history_of_Auckland_s_urban_form.pdf.
  • Azari, M., et al., 2016. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: application to Maragheh, Iran. GIScience & Remote Sensing, 53 (2), 183–205. doi:10.1080/15481603.2015.1137111.
  • Basse, R.M., et al., 2014. Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160–171. doi:10.1016/j.apgeog.2014.06.016.
  • Basse, R.M., Charif, O., and Bódisc, K., 2016. Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Applied Geography, 67, 94–108. doi:10.1016/j.apgeog.2015.12.001
  • Batty, M. and Xie, Y., 1994. From cells to cities. Environment and Planning B: Planning and Design, 21 (7), 531–548. doi:10.1068/b21S031.
  • Batty, M., Xie, Y., and Sun, Z., 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23 (3), 205–233. doi:10.1016/S0198-9715(99)00015-0.
  • Berberoğlu, S., Akın, A., and Clarke, K.C., 2016. Cellular automata modeling approaches to forecast urban growth for adana, Turkey: a comparative approach. Landscape and Urban Planning, 153, 11–27. doi:10.1016/j.landurbplan.2016.04.017
  • Bihamta, N., et al., 2015. Using the SLEUTH urban growth model to simulate future urban expansion of the Isfahan metropolitan area, Iran. Journal of the Indian Society of Remote Sensing, 43 (2), 407–414. doi:10.1007/s12524-014-0402-8.
  • Clarke, K.C., Hoppen, S., and Gaydos, L., 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24 (2), 247–261. doi:10.1068/b240247.
  • Dahiya, B.S., 2016. Impact of economic development on regional structure of urban systems in India. In: A.K. Dutt, et al., eds. Spatial diversity and dynamics in resources and urban development. Dordrecht: Springer, 209–228.
  • Du, G., et al., 2018. A comparative approach to modelling multiple urban land use changes using tree-based methods and cellular automata: the case of Greater Tokyo Area. International Journal of Geographical Information Science, 32 (4), 757–782. doi:10.1080/13658816.2017.1410550.
  • Dymond, J.R., et al., 2017. Estimating change in areas of indigenous vegetation cover in New Zealand from the New Zealand Land Cover Database (LCDB). New Zealand Journal of Ecology, 41 (1), 56–64. Available from: https://www.jstor.org/stable/26198783.
  • Feng, Y., et al., 2011. Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning, 102 (3), 188–196. doi:10.1016/j.landurbplan.2011.04.004.
  • Feng, Y. and Liu, Y., 2012. An optimised cellular automata model based on adaptive genetic algorithm for urban growth simulation. In: A.G.O. Yeh, et al., eds. Advances in spatial data handling and GIS. Berlin, Heidelberg: Springer, 27–38.
  • Feng, Y., Liu, Y., and Batty, M., 2016. Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–songjiang area of Shanghai, China. Stochastic Environmental Research and Risk Assessment, 30 (5), 1387–1400. doi:10.1007/s00477-015-1128-z.
  • Ferchichi, A., Boulila, W., and Farah, I.R., 2018. Reducing uncertainties in land cover change models using sensitivity analysis. Knowledge Information System, 55 (3), 719–740. doi:10.1007/s10115-017-1102-9.
  • Gao, J., 2016. Urban sprawl of Auckland, New Zealand, 1842 – 2014: spatial patterns and drivers. Indonesia: Regional Development Study Program.
  • Ghosh, P., et al., 2017. Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5, 64–77. doi:10.1016/j.rsase.2017.01.005.
  • Grekousis, G., Manetos, P., and Photis, Y.N., 2013. Modeling urban evolution using neural networks, fuzzy logic and GIS: the case of the Athens metropolitan area. Cities, 30, 193–203. doi:10.1016/j.cities.2012.03.006
  • Hagan, M.T., Demuth, H.B., and Beale, M.H., 1996. Neural network design. Boston, MA: PWS Publishing.
  • Hagenauer, J. and Helbich, M., 2012. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. International Journal of Geographical Information Science, 26 (6), 963–982. doi:10.1080/13658816.2011.619501.
  • He, C., et al., 2008. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 86 (1), 79–91. doi:10.1016/j.landurbplan.2007.12.010.
  • Hewitt, R. and Diaz-Pacheco, J., 2017. Stable models for metastable systems? Lessons from sensitivity analysis of a cellular automata urban land use model. Computers, Environment and Urban Systems, 62, 113–124. doi:10.1016/j.compenvurbsys.2016.10.011
  • Hosseinali, F. and Alesheikh, A.A., 2008. Weighting spatial information in GIS for copper mining exploration. American Journal of Applied Sciences, 5 (9), 1187–1198. doi:10.3844/ajassp.2008.1187.1198.
  • Islam, K., Rahman, M.F., and Jashimuddin, M., 2018. Modeling land use change using cellular automata and artificial neural network: the case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453. doi:10.1016/j.ecolind.2018.01.047
  • Jat, M.K., Choudhary, M., and Saxena, A., 2017. Urban growth assessment and prediction using RS, GIS and SLEUTH model for a heterogeneous urban fringe. The Egyptian Journal of Remote Sensing and Space Science, 10 (3), 1–19. doi:10.1016/j.ejrs.2017.02.002.
  • Jenerette, G.D., et al., 2007. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecology, 22 (3), 353–365. doi:10.1007/s10980-006-9032-z.
  • Kamusoko, C., et al., 2009. Rural sustainability under threat in Zimbabwe – simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29 (3), 435–447. doi:10.1016/j.apgeog.2008.10.002.
  • Krizhevsky, A., Sutskever, I., and Hinton, G., 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, (NIPS’2012), 1097–1105.
  • Laffan, S.W., 1998. Visualising neural network training in geographic space. In Proceedings of the Third International Conference on GeoCompuation. Available from: http://www.geocomputation.org/1998/index.html.
  • Lagarias, A., 2012. Urban sprawl simulation linking macro-scale processes to micro-dynamics through cellular automata, an application in Thessaloniki, Greece. Applied Geography, 34, 146–160. doi:10.1016/j.apgeog.2011.10.018
  • Li, X., et al., 2013. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. Journal of Environmental Management, 130, 106–116. doi:10.1016/j.jenvman.2013.08.055.
  • Li, X., et al., 2017. Experiences and issues of using cellular automata for assisting urban and regional planning in China. International Journal of Geographical Information Science, 31 (8), 1606–1629. doi:10.1080/13658816.2017.1301457.
  • Li, X. and Yeh, A.G.O., 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14 (2), 131–152. doi:10.1080/136588100240886.
  • Li, X. and Yeh, A.G.O., 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16 (4), 323–343. doi:10.1080/13658810210137004.
  • Li, Z.L., Bagan, H., and Yamagata, Y., 2018. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method. Science of the Total Environment, 636, 1180–1191. doi:10.1016/j.scitotenv.2018.04.361
  • Liao, J., et al., 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling & Software, 75, 163–175. doi:10.1016/j.envsoft.2015.10.014.
  • Lin, Y., et al., 2011. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 25 (1), 65–87. doi:10.1080/13658811003752332.
  • Lipton, Z.C., Berkowitz, J., and Elkan, C., 2015. A critical review of recurrent neural networks for sequence learning. arXiv preprint, arXiv, 1506.00019.
  • Liu, X., et al., 2017a. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94–116. doi:10.1016/j.landurbplan.2017.09.019.
  • Liu, Y., 2012. Modelling sustainable urban growth in a rapidly urbanising region using a fuzzy-constrained cellular automata approach. International Journal of Geographical Information Science, 26 (1), 151–167. doi:10.1080/13658816.2011.577434.
  • Liu, Y., et al., 2017b. Analysis of the effectiveness of urban land-use-change models based on the measurement of spatio-temporal, dynamic urban growth: a cellular automata case study. Sustainability, 9 (5), 1–15. doi:10.3390/su9050796.
  • Mohammad, M., Sahebgharani, A., and Malekipour, E., 2013. Urban growth simulation through Cellular Automata (CA), Anaiytic Hierarchy Process (AHP) and GIS, case study of 8th and 12th municipal districts of Isfahan. Geographia Technica, 8 (2), 57–70.
  • Mustafa, A., et al., 2017. Coupling agent-based, cellular automata and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69 (Supplement C), 529–540. doi:10.1016/j.landusepol.2017.10.009.
  • Mustafa, A., et al., 2018. Modelling built-up expansion and densification with multinomial logistic regression, cellular automata and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156. doi:10.1016/j.compenvurbsys.2017.09.009.
  • Mustafa, A., et al., 2018a. Addressing the determinants of built-up expansion and densification processes at the regional scale. Urban Study, 55 (15), 3279–3298. doi:10.1177/0042098017749176.
  • Mustafa, A., et al., 2018b. Comparing support vector machines with logistic regression for calibrating cellular automata land use change models. European Journal of Remote Sensing, 51 (1), 391–401. doi:10.1080/22797254.2018.1442179.
  • Mustafa, A., et al., 2018c. A Time Monte Carlo method for addressing uncertainty in land-use change models. International Journal of Geographical Information Science, 32, 2317–2333. doi:10.1080/13658816.2018.1503275.
  • Narain, V., 2017. Taken for a ride? Mainstreaming periurban transport with urban expansion policies. Land Use Policy, 64, 145–152. doi:10.1016/j.landusepol.2017.01.050
  • Olden, J.D. and Jackson, D.A., 2002. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154 (1), 135–150. doi:10.1016/S0304-3800(02)00064-9.
  • Paliwal, M. and Kumar, U.A., 2009. Neural networks and statistical techniques: a review of applications. Expert Systems with Applications, 36, 2–17. doi:10.1016/j.eswa.2007.10.005
  • Park, S., et al., 2011. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99 (2), 104–114. doi:10.1016/j.landurbplan.2010.09.001.
  • Pijanowski, B.C., et al., 2002. Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26 (6), 553–575. doi:10.1016/S0198-9715(01)00015-1.
  • Pijanowski, B.C., et al., 2009. Urban expansion simulation using geographic information systems and artificial neural networks. International Journal of Environmental Research, 3 (4), 493–502. doi:10.22059/IJER.2010.64.
  • Pijanowski, B.C., et al., 2014. A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a High Performance Computing (HPC) environment. Environ. Model and Software, 51, 250–268. doi:10.1016/j.envsoft.2013.09.015.
  • Poelmans, L. and Van Rompaey, A., 2010. Complexity and performance of urban expansion models. Computers, Environment and Urban Systems, 34 (1), 17–27. doi:10.1016/j.compenvurbsys.2009.06.001.
  • Pontius, R.G. and Neeti, N., 2010. Uncertainty in the difference between maps of future land change scenarios. Sustainability Science, 5 (1), 39–50. doi:10.1007/s11625-009-0095-z.
  • Rumelhart, D., Hinton, G., and Williams, R., 1986. Learning internal representations by error propagation. In: D.E. Rumelhart and J.L. McClelland, eds. Parallel distributed processing: explorations in the microstructures of cognition. Vol. 1, Cambridge: MIT Press, 318–362.
  • Santé, I., et al., 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108–122.
  • Seto, K.C., 2011. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: contemporary drivers and future scenarios. Global Environmental Change, 21 (Supplement 1), 94–107. doi:10.1016/j.gloenvcha.2011.08.005.
  • Shafizadeh-Moghadam, H., et al., 2017a. Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Computers, Environment and Urban Systems, 64, 297–308. doi:10.1016/j.compenvurbsys.2017.04.002.
  • Shafizadeh-Moghadam, H., et al., 2017b. Transition index maps for urban growth simulation: application of artificial neural networks, weight of evidence and fuzzy multi-criteria evaluation. Environmental Monitoring and Assessment, 189 (6), 300. doi:10.1007/s10661-017-5986-3.
  • Shafizadeh-Moghadam, H. and Helbich, M., 2013. Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149. doi:10.1016/j.apgeog.2013.01.009
  • Sudhira, H.S., et al., 2004. Urban sprawl: metrics, dynamics and modelling using GIS. International Journal of Applied Earth Observation and Geoinformation, 5 (1), 29–39. doi:10.1016/j.jag.2003.08.002.
  • Tayyebi, A., et al., 2014. Comparing three global parametric and local nonparametric models to simulate land use change in diverse areas of the world. Environmental Modelling and Software, 59, 202–221. doi:10.1016/j.envsoft.2014.05.022.
  • Tayyebi, A., et al., 2016. FSAUA: A framework for sensitivity analysis and uncertainty assessment in historical and forecasted land use maps. Environmental Modelling & Software, 84, 70–84. doi:10.1016/j.envsoft.2016.06.018.
  • Tayyebi, A. and Pijanowski, B.C., 2014a. Modeling multiple land use changes using ANN, CART and MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools. International Journal of Applied Earth Observation and Geoinformation, 28, 102–116. doi:10.1016/j.jag.2013.11.008
  • Tong, F. and Liu, X., 2005. Samples selection for artificial neural network training in preliminary structural design. Tsinghua Science & Technology, 10 (2), 233–239. doi:10.1016/S1007-0214(05)70060-2.
  • van Vliet, J., et al., 2013. A fuzzy set approach to assess the predictive accuracy of land use simulations. Ecological Modelling, 261-262, 32–42. doi:10.1016/j.ecolmodel.2013.03.019.
  • van Vliet, J., et al., 2016. A review of current calibration and validation practises in land-change modeling. Environmental Modelling & Software, 82, 174–182. doi:10.1016/j.envsoft.2016.04.017.
  • van Vliet, J., Bregt, A.K., and Hagen-Zanker, A., 2011. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecological Modelling, 222 (8), 1367–1375. doi:10.1016/j.ecolmodel.2011.01.017.
  • Visser, H., and De Nijs, T., 2006. The map comparison kit. Environmental Modelling & Software, 21 (3), 346–358. doi:10.1016/j.envsoft.2004.11.013
  • Wang, H., et al., 2013. Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China. Landscape and Urban Planning, 110, 99–112. doi:10.1016/j.landurbplan.2012.10.016.
  • White, R. and Engelen, G., 1994. Cellular dynamics and GIS: modelling spatial complexity. Geographical Systems, 1 (3), 237–253.
  • White, R. and Engelen, G., 2000. High-resolution integrated modelling of the spatial dynamics of urban and regional systems computers. Computers, Environment and Urban Systems, 24 (5), 383–400. doi:10.1016/S0198-9715(00)00012-0.
  • Wu, F., 1998. SimLand: a prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Science, 12 (1), 63–82. doi:10.1080/136588198242012.
  • Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural–urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818. doi:10.1080/13658810210157769.
  • Yang, Q., et al., 2008. Cellular automata for simulating land use changes based on support vector machines. Computers & Geosciences, 34 (6), 592–602. doi:10.1016/j.cageo.2007.08.003.
  • Yang, W., et al., 2011. Ecological benefits assessment and spatial modeling of urban ecosystem for controlling urban sprawl in Eastern Beijing, China. Ecological Complexity, 8 (2), 153–160. doi:10.1016/j.ecocom.2011.01.004.
  • Yang, X., Chen, R., and Zheng, X.Q., 2016. Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards and Risk, 7 (3), 918–932. doi:10.1080/19475705.2014.1001797.
  • Yin, H., et al., 2018. Exploring zoning scenario impacts upon urban growth simulations using a dynamic spatial model. Cities, 81, 214–229. doi:10.1016/j.cities.2018.04.010
  • Zhang, H., et al., 2015. Multi-agent based modeling of spatiotemporal dynamical urban growth in developing countries: simulating future scenarios of Lianyungang city, China. Stochastic Environmental Research and Risk Assessment, 29 (1), 63–78. doi:10.1007/s00477-014-0942-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.