631
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

SOVAS: a scalable online visual analytic system for big climate data analysis

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 1188-1209 | Received 10 May 2018, Accepted 04 Apr 2019, Published online: 22 Apr 2019

References

  • Bell, D.G., et al., 2007. NASA world wind: opensource GIS for mission operations. In: Aerospace Conference, 2007 IEEE, IEEE, 1–9. Big Sky, MT, USA.
  • Bellettini, C., et al., 2013. Mardigras: simplified building of reachability graphs on large clusters. In: International workshop on reachability problems, Parosh Aziz Abdulla, Igor Potapov, Uppsala, Sweden (Eds.), September 24–26. Springer, 83–95.
  • Bernholdt, D., et al., 2005. The earth system grid: supporting the next generation of climate modeling research. Proceedings of the IEEE, 93 (3), 485–495. doi:10.1109/JPROC.2004.842745
  • Boschetti, L., Roy, D., and Justice, C., 2008. Using NASA‘s world wind virtual globe for interactive internet visualization of the global MODIS burned area product. International Journal of Remote Sensing, 29 (11), 3067–3072. doi:10.1080/01431160701733023
  • Bostock, M., Ogievetsky, V., and Heer, J., 2011. D3 data-driven documents. IEEE Transactions on Visualization and Computer Graphics, 17 (12), 2301–2309. doi:10.1109/TVCG.2011.185
  • Brovelli, M., et al., 2013. The power of Virtual Globes for valorising cultural heritage and enabling sustainable tourism: NASA world wind applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, W2.
  • Chandola, V., Vatsavai, R.R., and Bhaduri, B., 2011. iGlobe: an interactive visualization and analysis framework for geospatial data. In: Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications, 23–25 May 2011 Washington, DC, USA: ACM, 21.
  • Chervenak, A., et al., 2003. High-performance remote access to climate simulation data: a challenge problem for data grid technologies. Parallel Computing, 29 (10), 1335–1356. doi:10.1016/j.parco.2003.06.001
  • Duffy, D., et al., 2012. Preliminary evaluation of MapReduce for high-performance climate data analysis [online]. NASA new technology report white paper. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120009187.pdf. [Accessed 8 May 2018].
  • ESRI. 2016. Available from: https://github.com/Esri/spatial-framework-for-hadoop/wiki/UDF-Documentation. [Accessed 3 May 2018].
  • Foster, I. and Kesselman, C., 1997. Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing, 11 (2), 115–128. doi:10.1177/109434209701100205
  • Früh, B., et al., 2016. Precipitation and temperature. In: Regional assessment of global change impacts,  Mauser, Wolfram, Prasch, Monika (Eds.), Cham: Springer, 251–260.
  • Gong, J., et al., 2012. Geospatial service web: towards integrated cyberinfrastructure for GIScience. Geo-Spatial Information Science, 15 (2), 73–84. doi:10.1080/10095020.2012.714098
  • Gunther, N., Puglia, P., and Tomasette, K., 2015. Hadoop superlinear scalability. Queue, 13 (5), 20.
  • Herring, S.C., et al., 2015. Explaining extreme events of 2014 from a climate perspective. Bulletin of the American Meteorological Society, 96 (12), S1–S172.
  • Hu, F., et al., 2018a. Evaluating the open source data containers for handling big geospatial raster data. ISPRS International Journal of Geo-Information, 7 (4), 144. doi:10.3390/ijgi7040144
  • Hu, F., et al., 2018b. ClimateSpark: an in-memory distributed computing framework for big climate data analytics. Computers & Geosciences, 115, 154–166. doi:10.1016/j.cageo.2018.03.011
  • Huang, Q., et al., 2013a. Utilize cloud computing to support dust storm forecasting. International Journal of Digital Earth, 6 (4), 338–355. doi:10.1080/17538947.2012.749949
  • Huang, Q., et al., 2013b. Evaluating open-source cloud computing solutions for geosciences. Computers & Geosciences, 59, 41–52. doi:10.1016/j.cageo.2013.05.001
  • Huang, Q., Li, J., and Li, Z., 2018. A hybrid cloud platform based on multi-sourced computing and model resources for geosciences. International Journal of Digital Earth, 11 (12), 1184–1204. doi:10.1080/17538947.2017.1385652
  • Lawrence, B., et al., 2003. The NERC DataGrid prototype. In: Proceedings of the UK e-science All Hands Meeting, 279–282. Nottingham, UK.
  • Li, J., et al., 2013a. Visualizing 3D/4D environmental data using many-core graphics processing units (GPUs) and multi-core central processing units (CPUs). Computers & Geosciences, 59, 78–89. doi:10.1016/j.cageo.2013.04.029
  • Li, Z., et al., 2013b. A high performance web-based system for analyzing and visualizing spatiotemporal data for climate studies. W2GIS, Lecture Notes in Computer Science, 7820, 190–198.
  • Li, Z., et al., 2015. Enabling big geoscience data analytics with a cloud-based, mapreduce-enabled and service-oriented workflow framework. PloS one, 10 (3), e0116781. doi:10.1371/journal.pone.0116781
  • Li, Z., et al., 2016. Automatic scaling hadoop in the cloud for efficient process of big geospatial data. ISPRS International Journal of Geo-Information, 5 (10), 173. doi:10.3390/ijgi5100173
  • Li, Z., et al., 2017a. A high performance query analytical framework for supporting data-intensive climate studies. Computers, Environment and Urban Systems, 62, 210–221. doi:10.1016/j.compenvurbsys.2016.12.003
  • Li, Z., et al., 2017b. Building Model as a Service to support geosciences. Computers, Environment and Urban Systems, 61, 141–152. doi:10.1016/j.compenvurbsys.2014.06.004
  • Liu, P., Gong, J., and Yu, M., 2015. Graphics processing unit-based dynamic volume rendering for typhoons on a virtual globe. International Journal of Digital Earth, 8 (6), 431–450. doi:10.1080/17538947.2014.915349
  • Luber, G. and McGeehin, M., 2008. Climate change and extreme heat events. American Journal of Preventive Medicine, 35 (5), 429–435. doi:10.1016/j.amepre.2008.08.021
  • Luo, W., et al., 2015. Web-based visualization of the global change assessment model. In: Proc. Workshop on Visualisation in Environmental Sciences, Cagliari, Italy. 2015.
  • Menne, M.J., et al., 2012. An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29 (7), 897–910. doi:10.1175/JTECH-D-11-00103.1
  • Nativi, S., et al., 2015. Big Data challenges in building the global earth observation system of systems. Environmental Modelling & Software, 68, 1–26. doi:10.1016/j.envsoft.2015.01.017
  • Resch, B., Wohlfahrt, R., and Wosniok, C., 2014. Web-based 4D visualization of marine geo-data using WebGL. Cartography and Geographic Information Science, 41 (3), 235–247. doi:10.1080/15230406.2014.901901
  • Rienecker, M.M., et al., 2011. MERRA: NASA’s modern-era retrospective analysis for research and applications. Journal of Climate, 24 (14), 3624–3648. doi:10.1175/JCLI-D-11-00015.1
  • Satyanarayanan, M., 2017. The emergence of edge computing. Computer, 50 (1), 30–39.
  • Schadt, E.E., et al., 2010. Computational solutions to large-scale data management and analysis. Nature Reviews Genetics, 11 (9), 647–657. doi:10.1038/nrg2857
  • Schnase, J.L., et al., 2014. MERRA analytic services: meeting the big data challenges of climate science through cloud-enabled climate analytics-as-a-service. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2013.12.003
  • Sheppard, S.R. and Cizek, P., 2009. The ethics of Google Earth: crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management, 90 (6), 2102–2117. doi:10.1016/j.jenvman.2007.09.012
  • Steed, C.A., et al., 2014. Web-based visual analytics for extreme scale climate science. In: Big Data (Big Data), 2014 IEEE International Conference on, IEEE, Washington, DC, USA, 383–392.
  • Sui, D. and Goodchild, M., 2011. The convergence of GIS and social media: challenges for GIScience. International Journal of Geographical Information Science, 25 (11), 1737–1748. doi:10.1080/13658816.2011.604636
  • Sukharev, J., et al. 2009, April. Correlation study of time-varying multivariate climate data sets. In: Visualization Symposium, 2009. PacificVis‘ 09. IEEE Pacific, IEEE, Beijing, China, 161–168.
  • Sun, M., et al., 2012a. A web-based geovisual analytical system for climate studies. Future Internet, 4, 1069–1085. doi:10.3390/fi4041069
  • Sun, X., et al., 2012b. Development of a Web-based visualization platform for climate research using Google Earth. Computers & Geosciences, 47, 160–168. doi:10.1016/j.cageo.2011.09.010
  • Wang, S., Li, W., and Wang, F., 2017. Web-scale multidimensional visualization of big spatial data to support earth sciences—a case study with visualizing climate simulation data. Informatics. Multidisciplinary Digital Publishing Institute, 17. doi:10.3390/informatics4030017
  • Williams, D.N., et al., 2009. The Earth System Grid: enabling access to multimodel climate simulation data. Bulletin of the American Meteorological Society, 90 (2), 195–206. doi:10.1175/2008BAMS2459.1
  • Williams, D.N., 2014. Visualization and analysis tools for ultrascale climate data. Eos, Transactions American Geophysical Union, 95 (42), 377–378. doi:10.1002/eost.v95.42
  • Woolf, A., Haines, K., and Liu, C., 2003. A web service model for climate data access on the grid. The International Journal of High Performance Computing Applications, 17 (3), 281–295. doi:10.1177/1094342003173002
  • Yang, C., et al., 2011. Spatial computing for supporting physical sciences. Proceedings of National Academy of Sciences, 108 (14), 5498–5503. doi:10.1073/pnas.0909315108
  • Yang, C., et al., 2017. Big data and cloud computing: innovation opportunities and challenges. International Journal of Digital Earth, 10, 13–53. doi:10.1080/17538947.2016.1239771
  • Yue, P., et al., 2013. Geoprocessing in cloud computing platforms–a comparative analysis. International Journal of Digital Earth, 6 (4), 404–425. doi:10.1080/17538947.2012.748847
  • Zhang, W., et al., 2015. A video cloud platform combing online and offline cloud computing technologies. Personal and Ubiquitous Computing, 19 (7), 1099–1110. doi:10.1007/s00779-015-0879-3
  • Zhao, W. and Khalil, M.A.K., 1993. The relationship between precipitation and temperature over the contiguous United States. Journal of Climate, 6 (6), 1232–1236. doi:10.1175/1520-0442(1993)006<1232:TRBPAT>2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.