1,624
Views
42
CrossRef citations to date
0
Altmetric
Research Articles

A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes

, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 802-823 | Received 01 May 2018, Accepted 01 Aug 2019, Published online: 14 Aug 2019

References

  • Abadi, M., et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
  • Bishop, C.M., 2006. Pattern recognition and machine learning (information science and statistics). Springer-Verlag Berlin, Heidelberg.
  • Caruana, R., Lawrence, S., and Giles, C.L., 2001. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, 402–408.
  • Chen, J., et al., 2018. Fine-grained prediction of urban population using mobile phone location data. International Journal of Geographical Information Science,  32 (9), 1770–1786.
  • Chen, P.T., Chen, F., and Qian, Z., 2016. Road traffic congestion monitoring in social media with Hinge-loss Markov random fields. In: IEEE International conference on data mining, Shenzhen, China. 80–89.
  • Cheng, T., et al., 2014. A dynamic spatial weight matrix and localized space–time autoregressive integrated moving average for network modeling. Geographical Analysis, 46 (1), 75–97. doi:10.1111/gean.12026
  • Cheng, T. and Wang, J., 2008. Integrated spatio-temporal data mining for forest fire prediction. Transactions in GIS, 12 (5), 591–611. doi:10.1111/tgis.2008.12.issue-5
  • Cheng, T. and Wang, J., 2009. Accommodating spatial associations in DRNN for space–time analysis. Computers, Environment and Urban Systems, 33 (6), 409–418. doi:10.1016/j.compenvurbsys.2009.08.004
  • Cheng, T., Wang, J., and Li, X., 2008. Space-time series forecasting by artificial neural networks. In: International conference on earth observation data processing and analysis (ICEODPA), Wuhan, China. 72853I.
  • Chollet, F. 2015. Keras: Deep learning library for theano and tensorflow. URL: https://keras.io/k, 7, 8.
  • Gao, S., et al., 2013. Understanding urban traffic-flow characteristics: a rethinking of betweenness centrality. Environment and Planning B: Planning and Design, 40 (1), 135–153. doi:10.1068/b38141
  • Gong, L., et al., 2016. Inferring trip purposes and uncovering travel patterns from taxi trajectory data. Cartography and Geographic Information Science, 43 (2), 103–114. doi:10.1080/15230406.2015.1014424
  • Graves, A., Mohamed, A.R., and Hinton, G., 2013. Speech recognition with deep recurrent neural networks. In: IEEE International conference on acoustics, speech and signal processing, Vancouver, British Columbia, Canada. 6645–6649.
  • Guo, D., et al., 2012. Discovering spatial patterns in origin-destination mobility data. Transactions in GIS, 16 (3), 411–429. doi:10.1111/tgis.2012.16.issue-3
  • He, K., et al., 2016a. Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). 27–30 June, Seattle, USA, 770–778.
  • He, K., et al., 2016b. Identity mappings in deep residual networks. European Conference on Computer Vision, Amsterdam, Netherlands, 630–645.
  • Heeren, T. and D’agostino, R., 1987. Robustness of the two independent samples t‐test when applied to ordinal scaled data. Statistics in Medicine, 6 (1), 79–90.
  • Hinton, G.E. and Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science, 313 (5786), 504–507. doi:10.1126/science.1127647
  • Hoang, M.X., Zheng, Y., and Singh, A.K., 2016. FCCF: forecasting citywide crowd flows based on big data. In: The ACM sigspatial international conference. Burlingame, California, 1–10.
  • Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural Computation, 9 (8), 1735–1780.
  • Ioffe, S. and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
  • Ke, J., et al., 2017. Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transportation Research Part C: Emerging Technologies, 85, 591–608. doi:10.1016/j.trc.2017.10.016
  • Kingma, D. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Lecun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436–444. doi:10.1038/nature14539
  • Lei, T., Zhang, Y., and Artzi, Y. 2017. Training rnns as fast as cnns. arXiv preprint arXiv:1709.02755.
  • Ma, X., et al., 2015. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54, 187–197. doi:10.1016/j.trc.2015.03.014
  • Ma, X., et al., 2017. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors, 17 (4). doi:10.3390/s17050968
  • Ma, Z., et al., 2014. Predicting short-term bus passenger demand using a pattern hybrid approach. Transportation Research Part C: Emerging Technologies, 39, 148–163. doi:10.1016/j.trc.2013.12.008
  • Nair, V. and Hinton, G.E., 2010. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), Haifa, Israel, 807–814.
  • Shaw, S.-L., Tsou, M.-H., and Ye, X., 2016. Editorial: human dynamics in the mobile and big data era. International Journal of Geographical Information Science, 30 (9), 1687–1693. doi:10.1080/13658816.2016.1164317
  • Shen, J. and Cheng, T., 2016. A framework for identifying activity groups from individual space-time profiles. International Journal of Geographical Information Science, 30 (9), 1785–1805. doi:10.1080/13658816.2016.1139119
  • Shi, X., et al., 2015. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, Montreal, Canada, 802–810.
  • Silva, R., Kang, S.M., and Airoldi, E.M., 2015. Predicting traffic volumes and estimating the effects of shocks in massive transportation systems. Proceedings of the National Academy of Sciences of the United States of America, 112 (18), 5643–5648. doi:10.1073/pnas.1412908112
  • Simonyan, K. and Zisserman, A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
  • Wang, J., et al., 2010. STARIMA for journey time prediction in London. In: Proceedings of the 5th IMA conference on mathematics in transport, London, UK.
  • Wang, J., Cheng, T., and Li, X., 2007. Nonlinear integration of spatial and temporal forecasting by support vector machines. In: International conference on fuzzy systems and knowledge discovery. Xi’an, China, 61–66.
  • Wang, J., Tsapakis, I., and Zhong, C., 2016. A space–time delay neural network model for travel time prediction. Engineering Applications of Artificial Intelligence, 52 (C), 145–160. doi:10.1016/j.engappai.2016.02.012
  • Wu, Y. and Tan, H. 2016. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022.
  • Zhang, J., et al., 2016. DNN-based prediction model for spatio-temporal data. In: ACM Sigspatial international conference on advances in geographic information systems, California, USA, 92.
  • Zhang, J., et al., 2018a. Predicting citywide crowd flows using deep spatio-temporal residual networks. Artificial Intelligence, 259, 147–166. doi:10.1016/j.artint.2018.03.002
  • Zhang, L., et al., 2018b. Attribute trajectory analysis: a framework to analyse attribute changes using trajectory analysis techniques. International Journal of Geographical Information Science, (2), 1–17. doi:10.1080/13658816.2018.1554812
  • Zheng, Y., et al., 2014. Urban computing: Concepts, methodologies, and applications. Acm Transactions on Intelligent Systems & Technology, 5 (3), 1–55.
  • Zhu, D., et al., 2018. Inferring spatial interaction patterns from sequential snapshots of spatial distributions. International Journal of Geographical Information Science, 32 (4), 783–805. doi:10.1080/13658816.2017.1413192
  • Zhu, X. and Guo, D., 2014. Mapping large spatial flow data with hierarchical clustering. Transactions in GIS, 18 (3), 421–435. doi:10.1111/tgis.2014.18.issue-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.