368
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Incorporating spatial association into statistical classifiers: local pattern-based prior tuning

, , ORCID Icon, , &
Pages 2077-2114 | Received 18 Jan 2019, Accepted 28 Feb 2020, Published online: 10 Mar 2020

References

  • Anselin, L., 1988. Spatial econometrics: methods and models. Studies in operational regional science. Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Anselin, L., 1995. Local indicators of spatial association–LISA. Geographical Analysis, 27 (2), 93–115. doi:10.1111/j.1538-4632.1995.tb00338.x.
  • Atkinson, P.M. and Naser, D.K., 2010. A geostatistically weighted k-NN classifier for remotely sensed imagery. Geographical Analysis, 42 (2), 204–225. doi:10.1111/j.1538-4632.2010.00790.x.
  • Austad, H.M. and Tjelmeland, H., 2017. Approximate computations for binary Markov random fields and their use in Bayesian models. Statistics and Computing, 27 (5), 1271–1292. doi:10.1007/s11222-016-9685-7.
  • Bai, H., et al., 2010. Using rough set theory to identify villages affected by birth defects: the example of Heshun, Shanxi, China. International Journal of Geographical Information Science, 24 (4), 559–576. doi:10.1080/13658810902960079.
  • Bai, H., et al., 2016. Detecting nominal variables’ spatial associations using conditional probabilities of neighboring surface objects’ categories. Information Sciences, 329 (Supplement C), 701–718. Special issue on Discovery Science. doi:10.1016/j.ins.2015.10.003.
  • Bicheron, P., et al., 2008. GlobCover: products description and validation report. Technical report.
  • Bishop, C.M., 2006. Pattern recognition and machine learning. New York, NY: Springer-Verlag.
  • Boots, B., 2003. Developing local measures of spatial association for categorical data. Journal of Geographical Systems, 5 (2), 139–160. doi:10.1007/s10109-003-0110-3.
  • Chen, X., et al., 2019. A novel method for inverse uncertainty propagation. In: E. Minisci, et al., eds. Advances in evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Cham: Springer International Publishing, 353–370.
  • Chun, Y. and Griffith, D., 2013. Spatial statistics and geostatistics: theory and applications for geographic information science and technology. Thousand Oaks: Sage.
  • Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20 (1), 37–46. doi:10.1177/001316446002000104.
  • Ding, W., Stepinski, T., and Salazar, J., 2009. Discovery of geospatial discriminating patterns from remote sensing datasets. In: C. Apte, et al., eds. Proceedings of the 2009 SIAM International Conference on Data Mining. Sparks, Nevada: Society for Industrial and Applied Mathematics, 425–436. doi:10.1137/1.9781611972795.37.
  • Duda, R.O., Hart, P.E., and Stork, D.G., 2001. Pattern classification. 2nd ed. New York, NY, USA: Wiley & Sons, Inc.
  • Evans, S.W., 2017. An assessment of land cover change as a source of information for conservation planning in the Vhembe biosphere reserve. Applied Geography, 82 (Supplement C), 35–47. doi:10.1016/j.apgeog.2017.02.014.
  • Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27 (8), 861–874. doi:10.1016/j.patrec.2005.10.010.
  • Fortin, M. and Dale, M., 2005. Spatial analysis: a guide for ecologists. Cambridge, UK: Cambridge University Press.
  • Fotheringham, A.S. and Brunsdon, C., 1999. Local forms of spatial analysis. Geographical Analysis, 31 (4), 340–358. doi:10.1111/j.1538-4632.1999.tb00989.x.
  • Fotheringham, A.S., Charlton, M.E., and Brunsdon, C., 1998. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A: Economy and Space, 30 (11), 1905–1927. doi:10.1068/a301905.
  • Gartland, L., 2010. Heat Islands: understanding and mitigating heat in urban areas. Abingdon, UK and NY, USA: Routledge.
  • Ge, Y. and Bai, H., 2010. MPS-based information extraction method for remotely sensed imagery: a comparison of fusion methods. Canadian Journal of Remote Sensing, 36, 763–779. doi:10.5589/m11-003
  • Ge, Y. and Bai, H., 2011. Multiple-point simulation-based method for extraction of objects with spatial structure from remotely sensed imagery. International Journal of Remote Sensing, 32, 2311–2335. doi:10.1080/01431161003698278
  • Ge, Y., Li, S., and Lakhan, V.C., 2009. Development and testing of a subpixel mapping algorithm. IEEE Transactions on Geoscience and Remote Sensing, 47 (7), 2155–2164. doi:10.1109/TGRS.2008.2010863.
  • Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Oxford, UK: Oxford University Press.
  • Goovaerts, P., 2002. Geostatistical incorporation of spatial coordinates into supervised classification of hyperspectral data. Journal of Geographical Systems, 4 (1), 99–111. doi:10.1007/s101090100077.
  • Griffith, D.A., 1989. Spatial econometrics: methods and models. Economic Geography, 65 (2), 160–162. doi:10.2307/143780.
  • Haining, R.P., 1990. Spatial data analysis in the social and environmental sciences. Cambridge, UK: Cambridge University Press.
  • Hsu, W.H., 2003. Data mining. In: J. Wang, ed. Chap. Control of inductive bias in supervised learning using evolutionary computation: a wrapper-based approach. Hershey, PA, USA: IGI Global, 27–54.
  • Hubei provincial government, 2018. Compilation of Precise Poverty Alleviation Policies in Hubei Province. [online]. [Accessed 18 June 2019].
  • Hughes, J., Haran, M., and Caragea, P., 2011. Autologistic models for binary data on a lattice. Environmetrics, 22 (7), 857–871. doi:10.1002/env.1102.
  • Jeon, B. and Landgrebe, D.A., 1992. Classification with spatio-temporal interpixel class dependency contexts. IEEE Transactions on Geoscience and Remote Sensing, 30 (4), 663–672. doi:10.1109/36.158859.
  • Jiang, Z. and Shekhar, S., 2017. Spatial big data science classification techniques for earth observation imagery. Cham, Switzerland: Springer International Publishing AG.
  • Joshi, N., et al., 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8 (1), 70. doi:10.3390/rs8010070.
  • Journel, A.G., 2002. Combining knowledge from diverse sources: an alternative to traditional data independence hypotheses. Mathematical Geology, 34 (5), 573–596. doi:10.1023/A:1016047012594.
  • Khare, D., et al., 2015. Impact of landuse/land cover change on run-off in a catchment of Narmada river in India. Applied Geomatics, 7 (1), 23–35. doi:10.1007/s12518-014-0148-6.
  • Li, X., et al., 2017. Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps. Remote Sensing of Environment, 196, 293–311. doi:10.1016/j.rse.2017.05.011.
  • Liao, Y., et al., 2009a. Risk assessment of human neural tube defects using a Bayesian belief network. Stochastic Environmental Research and Risk Assessment, 24 (1), 93–100. doi:10.1007/s00477-009-0303-5.
  • Liao, Y., et al., 2009b. Identifying environmental risk factors for human neural tube defects before and after folic acid supplementation. BMC Public Health, 9, 391. doi:10.1186/1471-2458-9-391.
  • Liu, J., et al., 2017a. Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes. Journal of the Royal Statistical Society: Series A (Statistics in Society), 181 (3), 803–823.
  • Murphy, K.P., 2012. Machine learning: a probabilistic perspective. Cambridge, MA, USA: The MIT Press.
  • Ni, L., et al., 2014. Edge-constrained Markov random field classification by integrating hyperspectral image with LiDAR data over urban areas. Journal of Applied Remote Sensing, 8 (1), 085089. doi:10.1117/1.JRS.8.085089.
  • Paciorek, C.J., 2007. Computational techniques for spatial logistic regression with large data sets. Computational Statistics & Data Analysis, 51 (8), 3631–3653. doi:10.1016/j.csda.2006.11.008.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  • Powers, D.M.W., 2011. Evaluation: from precision, recall and f-measure to Roc, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2 (1), 37–63.
  • Rajabi, M.M., 2019. Review and comparison of two meta-model-based uncertainty propagation analysis methods in groundwater applications: polynomial chaos expansion and Gaussian process emulation. Stochastic Environmental Research and Risk Assessment, 33 (2), 607–631. doi:10.1007/s00477-018-1637-7.
  • Ritchie, J., 2017. Relevance Vector Machine implementation using the scikit-learn API. [online]. [Accessed 15 November 2017; 01 July 2019].
  • Shekhar, S., et al., 2002. Spatial contextual classification and prediction models for mining geospatial data. IEEE Transactions on Multimedia, 4 (2), 174–188. doi:10.1109/TMM.2002.1017732.
  • Sherman, M., Apanasovich, T.V., and Carroll, R.J., 2006. On estimation in binary autologistic spatial models. Journal of Statistical Computation and Simulation, 76 (2), 167–179. doi:10.1080/00949650412331320873.
  • Smith, J.W.F. and Campbell, I.A., 1989. Error in polygon overlay processing of geomorphic data. Earth Surface Processes and Landforms, 14, 703–717. doi:10.1002/esp.3290140805
  • Solberg, A.H.S., Taxt, T., and Jain, A.K., 1996. A Markov random field model for classification of multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 34 (1), 100–113. doi:10.1109/36.481897.
  • Strebelle, S., 2000. Sequential simulation drawing structures from training images. Thesis (PhD). Stanford, CA, USA: Stanford University.
  • Tang, Y., et al., 2016. A multiple-point spatially weighted k-NN classifier for remote sensing. International Journal of Remote Sensing, 37 (18), 4441–4459. doi:10.1080/01431161.2016.1214300.
  • Tatem, A.J., et al., 2001. Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Transactions on Geoscience and Remote Sensing, 39 (4), 781–796. doi:10.1109/36.917895.
  • Theodoridis, S. and Koutroumbas, K., 2009. Pattern recognition. 4th ed. Boston: Academic Press.
  • Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geology, 46 (2), 234–240.
  • Tong, X.Y., et al., 2020. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 237, 111322. doi:10.1016/j.rse.2019.111322.
  • Vainer, I., et al., 2009. Scalable classification in large scale spatiotemporal domains applied to voltage-sensitive dye imaging. In: 2009 Ninth IEEE International Conference on Data Mining, December. 543–551. doi:10.1177/1753193408102369.
  • Wang, J., et al., 2002. Spatial sampling design for monitoring the area of cultivated land. International Journal of Remote Sensing, 23 (2), 263–284. doi:10.1080/01431160010025998.
  • Wang, J., et al., 2010. Assessing local determinants of neural tube defects in the Heshun Region, Shanxi Province, China. BMC Public Health, 10, 52. doi:10.1186/1471-2458-10-52.
  • Wang, J.F., et al., 2012. A review of spatial sampling. Spatial Statistics, 2, 1–14.
  • Wang, Q., Shi, W., and Wang, L., 2014. Allocating classes for soft-then-hard subpixel mapping algorithms in units of class. IEEE Transactions on Geoscience and Remote Sensing, 52 (5), 2940–2959. doi:10.1109/TGRS.2013.2267802.
  • White, P., Gelfand, A., and Utlaut, T., 2017. Prediction and model comparison for areal unit data. Spatial Statistics, 22 (Part 1), 89–106. doi:10.1016/j.spasta.2017.09.002.
  • Wu, C., et al., 2019. Multiscale geographically and temporally weighted regression: exploring the spatiotemporal determinants of housing prices. International Journal of Geographical Information Science, 33 (3), 489–511. doi:10.1080/13658816.2018.1545158.
  • Wu, J., et al., 2004. Exploratory spatial data analysis for the identification of risk factors to birth defects. BMC Public Health, 4, 23. doi:10.1186/1471-2458-4-23.
  • Xia, J., et al., 2015. Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 53 (5), 2532–2546. doi:10.1109/TGRS.2014.2361618.
  • Yu, H., et al., 2016. Spectral-spatial hyperspectral image classification using subspace- based support vector machines and adaptive Markov random fields. Remote Sensing, 8 (4), 355. doi:10.3390/rs8040355.
  • Zhang, Y. and Prasad, S., 2016. Multisource geospatial data fusion via local joint sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 54 (6), 3265–3276. doi:10.1109/TGRS.2016.2514481.
  • Zhong, Y. and Zhang, L., 2012. Remote sensing image subpixel mapping based on adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42 (5), 1306–1329. doi:10.1109/TSMCB.2012.2189561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.