710
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A hybrid data model for dynamic GIS: application to marine geomorphological dynamics

ORCID Icon, & ORCID Icon
Pages 1475-1499 | Received 13 Apr 2020, Accepted 24 Sep 2020, Published online: 12 Oct 2020

References

  • Camara, G. et al., 2014. Fields as a generic data type for big spatial. 8th geographic information science. Vienna: Springer, Cham, 159–172.
  • Claramunt, C. and Thériault, M., 1995. Managing time in GIS an event-oriented approach. In: J. Clifford and A. Tuzhilin, eds. Recent advances in temporal databases. Berlin: Springer-Verlag, 23–42.
  • Couclelis, H., 1992. People manipulate objects (but cultivate fields): beyond the raster-vector debate in GIS. Spatio-Temporal Reasoning, 639, 65–77.
  • Cova, T.J., 2016. Data model, F-Objects and O-Fields. International Encyclopedia of Geography: People, the Earth, Environment and Technology Science, 15, 1–5.
  • Cova, T.J. and Goodchild, M.F., 2002. Extending geographical representation to include fields of spatial objects. International Journal of Geographical Information Science., 16 (6), 509–532. doi:10.1080/13658810210137040
  • De Bakker, M.P., et al., 2017. Design and demonstration of a data model to integrate agent-based and field-based modelling. Environmental Modelling and Software, 89, 172–189. Elsevier. doi:10.1016/j.envsoft.2016.11.016
  • De Jong, K. and Karssenberg, D., 2019. A physical data model for spatio-temporal objects. Environmental Modelling and Software. Elsevier, 122 (12), 1811–1828.
  • Frihida, A., Marceau, D.J., and Thériault, M., 2002. Spatio-temporal object-oriented data model for disaggregate travel behavior. Transactions in GIS, 6 (3), 277–294. doi:10.1111/1467-9671.00111
  • Galton, A., 2001. A formal theory of objects and fields. International conference on spatial information theory: lecture notes in computer science. Berlin, Germany: Springer, ( 2205), 458–473.
  • Galton, A., 2004. Fields and objects in space, time, and space-time. Spatial Cognition and Computation, 4 (1), 39–68. doi:10.1207/s15427633scc0401_4
  • Gebbert, S. and Pebesma, E., 2017. The GRASS GIS temporal framework. International Journal of Geographical Information Science, 31 (7), 1273–1292. doi:10.1080/13658816.2017.1306862
  • Goodchild, M.F., Yuan, M., and Cova, T.J., 2007. Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21 (3), 239–260. doi:10.1080/13658810600965271
  • Grenon, P. and Smith, B., 2004. SNAP and SPAN: towards dynamic spatial ontology. Spatial Cognition and Computation: Taylor and Francis, 4 (1), 69–104. doi:10.1207/s15427633scc0401_5
  • Hamdani, Y., Thibaud, R., and Claramunt, C., 2019. A hybrid temporal GIS representation for coastal dynamics. Proceedings of the 27th ACM SIGSPATIAL international conference on advances in geographic information systems. Chicago, Illinois, USA, 584–587.
  • Hughes, J.N., et al., 2015. Geomesa: a distributed architecture for spatio-temporal fusion large-scale spatial data. Geospatial Informatics, Fusion, and Motion Video Analytics V. International Society for Optics and Photonics, 9473, 94730F.
  • Ibrahim, A., Ulanbek, T., and Menno-Jan, K., 2014. Representing internal varying characteristics of moving objects. East European conference on advances in databases and information systems. Cham, Switzerland: Springer, 207–218.
  • Kim, K.S. and Yasushi, K., 2010. An object-field perspective data model for moving geographic phenomena. International conference on database systems for advanced applications. Berlin, Germany: Springer, 410–421.
  • Langran, G., 1992. Time in Geographic Information Systems. London: Taylor and Francis, 547–548.
  • Liu, Y., et al., 2008. Towards a General Field model and its order in GIS. International Journal of Geographical Information Science, 22 (6), 623–643. doi:10.1080/13658810701587727
  • Mitasova, H., et al., 2011. Landscape dynamics from LiDAR data time series. Geomorphometry, 2011, 3–6.
  • Peuquet, D.J., 1994. It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of the American Geographers, 84 (3), 441–461. doi:10.1111/j.1467-8306.1994.tb01869.x
  • Peuquet, D.J., 2001. Making space for time: issues in space-time data representation. Environmental Modelling and Software. Elsevier, 122 (12), 1811–1828.
  • Peuquet, D.J., Duan, N., and Pebesma, E., 1995. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems, 9 (1), 7–24. doi:10.1080/02693799508902022
  • Pultar, E., et al., 2010. EDGIS: a dynamic GIS based on space time points. International Journal of Geographical Information Science, 24 (3), 329–346. doi:10.1080/13658810802644567
  • Sengupta, R. and Yan, C., 2004. A hybrid spatio-temporal data model and structure (HST-DMS) for efficient storage and retrieval of land use information. Transactions in GIS, 8 (3), 351–366. doi:10.1111/j.1467-9671.2004.00187.x
  • Sinton, D., 1978. The inherent structure of information as a constraint to analysis: mapped thematic data as a case study. Harvard Papers on Geographic Information Systems,7, 1–7.
  • Thibaud, R., et al., 2013. A spatio-temporal graph model for marine dune dynamics analysis and representation. Transactions in GIS, 17 (5), 742–762.
  • Worboys, M. and Hornsby, K., 2004. From objects to events: GEM, the geospatial event model. International conference on geographic information science, 327–343.
  • Worboys, M.F., 1994. A unified model for spatial and temporal information. The Computer Journal, 37 (1), 26–34. Oxford University Press. doi:10.1093/comjnl/37.1.26
  • Yi, J., et al., 2014. A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena. International Journal of Geographical Information Science, 28 (5), 1010–1027. doi:10.1080/13658816.2014.890201
  • Yu, J., Wu, J., and Sarwat, M., 2015. Geospark: A cluster computing framework for processing large-scale spatial data. Proceedings of the 23rd ACM SIGSPATIAL international conference on advances in geographic information systems. Seattle, Washington, USA, 1–4.
  • Yuan, L., et al., 2010. CAUSTA: clifford algebra-based unified spatio-temporal analysis. Transactions in GIS, 14 (5), 59–83. doi:10.1111/j.1467-9671.2010.01221.x
  • Yuan, M., 1996. Temporal GIS and spatio-temporal modeling. Proceedings of third international conference workshop on Integrating GIS and environment modeling, Santa Fe,NM, 33.
  • Yuan, M., 2001. Representing complex geographic phenomena in GIS. Cartography and Geographic Information Science, 28 (2), 83–96. doi:10.1559/152304001782173718
  • Zhao, Z., Shaw, S., and Wang, D., 2015. A space-time raster GIS data model for spatiotemporal analysis of vegetation responses to a freeze event. Transactions in GIS, 19 (1), 151–168. doi:10.1111/tgis.12088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.