4,408
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Walking through the forests of the future: using data-driven virtual reality to visualize forests under climate change

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1155-1178 | Received 28 Aug 2018, Accepted 27 Sep 2020, Published online: 10 Nov 2020

References

  • Ahlqvist, O., Khodke, N., and Ramnath, R., 2018. GeoGame analytics – A cyber-enabled petri dish for geographic modeling and simulation. Computers, Environment and Urban Systems, 67, 1–8. doi:10.1016/j.compenvurbsys.2017.08.013
  • Alley, R.B., et al., 2003. Abrupt climate change. Science, 299 (5615), 2005–2010. doi:10.1126/science.1081056
  • Bao, G., et al., 2012. Large-scale forest rendering. Real-time, realistic, and progressive. Computers & Graphics, 36 (3), 140–151. doi:10.1016/j.cag.2012.01.005
  • Bastin, J.-F., et al., 2019. The global tree restoration potential. Science (New York, N.Y.), 365 (6448), 76–79. doi:10.1126/science.aax0848
  • Bolliger, J., Lischke, H., and Green, D.G., 2005. Simulating the spatial and temporal dynamics of landscapes using generic and complex models. Ecological Complexity, 2 (2), 107–116. doi:10.1016/j.ecocom.2004.11.005
  • Bruneton, E. and Neyret, F., 2012. Real-time Realistic Rendering and Lighting of Forests. Computer Graphics Forum, 31 (2pt1), 373–382. doi:10.1111/j.1467-8659.2012.03016.x
  • Canadell, J.G. and Schulze, E.D., 2014. Global potential of biospheric carbon management for climate mitigation. Nature Communications, 5 (1), 5282. doi:10.1038/ncomms6282
  • Ch’ng, E., 2009. Experiential archaeology. Is virtual time travel possible? Journal of Cultural Heritage, 10 (4). [Accessed 27 August 2017, pp. 458–470. doi:10.1016/j.culher.2009.02.001
  • Chou, C.-Y., et al., 2012. Three-dimensional landscape visualizations of forest restoration scenarios for southern pine beetle-infected forests. Tree and Forestry Science and Biotechnology, 6 (1), 40–50. [Accessed 31 May 2018].
  • Clayton, S., et al., 2015. Psychological research and global climate change. Nature Climate Change, 5 (7), 640–646. doi:10.1038/nclimate2622
  • Decaudin, P. and Neyret, F., 2009. Volumetric Billboards. Computer Graphics Forum, 26 (3), 553.
  • Dede, C., 2009. Immersive interfaces for engagement and learning. Science, 323 (5910), 66–69. Available from: http://www.jstor.org/stable/20177121 [ Accessed: [25 october 2017].
  • Dockerty, T., et al., 2005. Visualising the potential impacts of climate change on rural landscapes. Computers, Environment and Urban Systems, 29 (3), 297–320. doi:10.1016/j.compenvurbsys.2004.05.004
  • Esri, 2019. About CityEngine [online]. Available from: https://doc.arcgis.com/en/cityengine/latest/get-started/get-started-about-cityengine.htm [Accessed 4 February 2020].
  • Fabrika, M., Valent, P., and Scheer, Ľ., 2018. Thinning trainer based on forest-growth model, virtual reality and computer-aided virtual environment. Environmental Modelling and Software, 100, 11–23. doi:10.1016/j.envsoft.2017.11.015
  • Favorskaya, M.N. and Jain, L.C., 2017. Handbook on Advances in Remote Sensing and Geographic Information Systems, Paradigms and Applications in Forest Landscape Modeling. Berlin: Springer.
  • Fiore, S.M., et al., 2009. Virtual experiments and environmental policy. Journal of Environmental Economics and Management, 57 (1), 65–86. doi:10.1016/j.jeem.2008.08.002
  • Fisher, P. and Unwin, D., eds.. 2001. Virtual reality in geography. Boca Raton: CRC Press.
  • Fujisaki, I., et al., 2008. Stand assessment through Lidar-based forest visualization using immersive virtual environment technology. Forest Science, 54 (1), 1–7.
  • Griffon, S., et al., 2011. Virtual reality for cultural landscape visualization. Virtual Reality, 154, 279–294. [Accessed 13 January 2017 doi:10.1007/s10055-010-0160-z
  • Gumbau, J., et al., 2011. View-dependent pruning for real-time rendering of trees. Computers & Graphics, 35 (2), 364–374. doi:10.1016/j.cag.2010.11.014
  • Gustafson, E.J., 2013. When relationships estimated in the past cannot be used to predict the future. Using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology, 28 (8), 1429–1437. [Accessed 21 July 2018. doi:10.1007/s10980-013-9927-4
  • Gustafson, E.J. and Sturtevant, B.R., 2013. Modeling forest mortality caused by drought stress. Implications for climate change. Ecosystems, 16 (1), 60–74. doi:10.1007/s10021-012-9596-1
  • Hartmann, T., et al., 2016. The spatial presence experience scale (SPES). Journal of Media Psychology, 28 (1), 1–15. doi:10.1027/1864-1105/a000137
  • He, H.S., 2008. Forest landscape models. Definitions, characterization, and classification. Forest Ecology and Management, 254 (3), 484–498. doi:10.1016/j.foreco.2007.08.022
  • Heilig, M.L., 1962. Sensorama Patent. United States patent application 3050870. 28 August.
  • Huang, J., et al., 2018. From archive, to access, to experience – historical documents as a basis for immersive virtual reality. Journal of Map & Geography Libraries, 14 (1), 40–63. Available from: https://www.tandfonline.com/doi/full/10.1080/15420353.2018.1498427.
  • Huang, J., et al., 2019a. Visualizing ecological data in virtual reality. In:. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 23–27 March 2019 Osaka. Piscataway, NJ: IEEE, 1311–1312.
  • Huang, J., et al., 2019b. Visualizing natural environments from data in virtual reality: combining realism and uncertainty. In:. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 23–27 March 2019 Osaka. Piscataway, NJ: IEEE, 1485–1488.
  • Incropera, F.P., 2015. Climate Change: A Wicked Problem:. Complexity and Uncertainty at the Intersection of Science, Economics, Politics. and Human Behavior. New York: Cambridge University Press.
  • Joos, F., Prentice, I.C., and House, J.I., 2002. Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with US forest inventory data. Global Change Biology, 8 (4), 299–303. doi:10.1046/j.1354-1013.2002.00505.x
  • Kohek, Š., et al., 2019. Interactive synthesis and visualization of self-organizing trees for large-scale forest succession simulation. Multimedia Systems, 25 (3), 213–227. doi:10.1007/s00530-018-0597-6
  • Kohek, Š. and Strnad, D., 2018. Interactive large-scale procedural forest construction and visualization based on particle flow simulation. Computer Graphics Forum, 37 (1), 389–402. doi:10.1111/cgf.13304
  • Lertzman, R., 2015. Environmental melancholia:. Psychoanalytic dimensions of engagement. London: Routledge.
  • Li, C., et al., 2011. Modeling and generating moving trees from video. ACM Trans. Graph, 30 (6), 1–12. doi:10.1145/2070781.2024161
  • Li, H. and Reynolds, J.F., 1993. A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 8 (3), 155–162. doi:10.1007/BF00125347
  • Liberman, N. and Trope, Y., 1998. The role of feasibility and desirability considerations in near and distant future decisions: A test of temporal construal theory. Journal of Personality and Social Psychology, 75 (1), 5–18. doi:10.1037/0022-3514.75.1.5
  • Lucash, M.S., et al., 2017. Spatial resilience of forested landscapes under climate change and management. Landscape Ecology, 32 (5), 953–969.
  • Lucash, M.S., et al., 2018. More than the sum of its parts. How disturbance interactions shape forest dynamics under climate change. Ecosphere, 9 (6), e02293. doi:10.1002/ecs2.2293
  • Maceachren, A.M. and Brewer, I., 2004. Developing a conceptual framework for visually-enabled geocollaboration. International Journal of Geographical Information Science, 18 (1), 1–34. doi:10.1080/13658810310001596094
  • Makowski, M., et al., 2019. Synthetic silviculture. multi-scale modeling of plant ecosystems. ACM Transactions on Graphics, 38 (4), 1–14. doi:10.1145/3306346.3323039
  • Marriott, K., et al., eds., 2018. Immersive Analytics. Cham: Springer International Publishing.
  • Mladenoff, D.J., 2004. LANDIS and forest landscape models. Ecological Modelling, 180 (1), 7–19. doi:10.1016/j.ecolmodel.2004.03.016
  • Müller, P., et al., 2006. Procedural modeling of buildings. ACM Transactions on Graphics, 25 (3), 614. doi:10.1145/1141911.1141931
  • Neubert, B., et al., 2011. Improved model- and view-dependent pruning of large botanical scenes. Computer Graphics Forum, 30 (6), 1708–1718. doi:10.1111/j.1467-8659.2011.01897.x
  • Neubert, B., Franken, T., and Deussen, O., 2007. Approximate image-based tree-modeling using particle flows. ACM Transactions on Graphics, 26 (99), 88. doi:10.1145/1276377.1276487
  • Nielsen, J., 1993. Iterative user-interface design. Computer, 26 (11), 32–41.
  • O’Neill, R.V., et al., 1988. Indices of landscape pattern. Landscape Ecology, 1 (3), 153–162. doi:10.1007/BF00162741
  • Perry, G.L.W. and Enright, N.J., 2006. Spatial modelling of vegetation change in dynamic landscapes: a review of methods and applications. Progress in Physical Geography, 30 (1), 47–72. doi:10.1191/0309133306pp469ra
  • Pettit, C., et al., 2012. Developing a multi-scale visualisation framework for use in climate change response. Landscape Ecology, 27 (4), 487–508.
  • Saito, K., et al., 2007. Historical forest landscape reconstruction using continuous forest management data from 1931 to 2001 at Tokyo university forest in Chichibu, central Japan. Journal of Forest Research, 12 (3), 193–200. doi:10.1007/s10310-007-0010-3
  • Scheller, R.M., et al., 2007. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecological Modelling, 201 (3–4), 409–419. doi:10.1016/j.ecolmodel.2006.10.009
  • Scheller, R.M., et al., 2011. The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in lake states Mesic forests. Ecological Modelling, 222 (1), 144–153. doi:10.1016/j.ecolmodel.2010.09.009
  • Scheller, R.M. and Mladenoff, D.J., 2005. A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA. Global Change Biology, 11 (2), 307–321. doi:10.1111/j.1365-2486.2005.00906.x
  • Scheller, R.M. and Mladenoff, D.J., 2007. An ecological classification of forest landscape simulation models. Tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecology, 22 (4), 491–505. doi:10.1007/s10980-006-9048-4
  • Schroth, O., Pond, E., and Sheppard, S.R.J., 2015. Evaluating presentation formats of local climate change in community planning with regard to process and outcomes. Landscape and Urban Planning, 142, 147–158. doi:10.1016/j.landurbplan.2015.03.011
  • 1962. Sensorama Patent.
  • Shaw, A., et al., 2009. Making local futures tangible—synthesizing, downscaling, and visualizing climate change scenarios for participatory capacity building. Global Environmental Change, 19 (4), 447–463. doi:10.1016/j.gloenvcha.2009.04.002
  • Sheppard, S., 2012. Visualizing Climate Change. A guide to visual communication of climate change and developing local solutions. London: Earthscan.
  • Sheppard, S.R.J., 2015. Making climate change visible. A critical role for landscape professionals. Landscape and Urban Planning, 142, 95–105. [Accessed 11 January 2017 doi:10.1016/j.landurbplan.2015.07.006
  • Singh, A.S., et al., 2017. The perceived psychological distance of climate change impacts and its influence on support for adaptation policy. Environmental Science & Policy, 73, 93–99. doi:10.1016/j.envsci.2017.04.011
  • Sutcliffe, A. and Gault, B., 2004. Heuristic evaluation of virtual reality applications. Interacting with Computers, 16 (4), 831–849. doi:10.1016/j.intcom.2004.05.001
  • Sutherland, I.E., 1968. A head-mounted three dimensional display. In: 1968.
  • Swetnam, R.D. and Korenko, J., 2019. Can computer game landscapes target new audiences for landscape quality assessment? Applied Geography, 113, 102102. doi:10.1016/j.apgeog.2019.102102
  • Tan, P., et al., 2007. Image-based tree modeling. ACM Transactions on Graphics, 26 (99), 87. doi:10.1145/1276377.1276486
  • Wang, X., et al., 2006. Visualizing forest landscapes using public data sources. Landscape and Urban Planning, 75 (1–2), 111–124. doi:10.1016/j.landurbplan.2004.12.010
  • Williams, J.W. and Jackson, S.T., 2007. Novel climates, no-analog communities, and ecological surprises. Paleoecology, 5 (9), 475–482.
  • Wilson, B.T., Lister, A.J., and Riemann, R.I., 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management, 271, 182–198. doi:10.1016/j.foreco.2012.02.002
  • Wither, J., et al., 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. EUROGRAPHICS, 30 March–3 April 2009 Munich. Oxford: Blackwell Publishing, 541–550.
  • Xie, X., et al., 2011. Application of China’s national forest continuous inventory database. Environmental Management, 48 (6), 1095–1106. doi:10.1007/s00267-011-9716-2
  • Zamuda, A. and Brest, J., 2013. Environmental framework to visualize emergent artificial forest ecosystems. Information Sciences, 220, 522–540. doi:10.1016/j.ins.2012.07.031
  • Zhang, F., et al., 2012. Attributing carbon changes in conterminous U.S. forests to disturbance and non-disturbance factors from 1901 to 2010. Journal of Geophysical Research: Biogeosciences, 117 (G2), n/a-n/a.
  • Zhang, X., et al., 2014. Data-driven synthetic modeling of trees. IEEE Transactions on Visualization and Computer Graphics, 20 (9), 1214–1226. doi:10.1109/TVCG.2014.2316001
  • Zhang, X., et al., 2017. Tree branch level of detail models for forest navigation. Computer Graphics Forum, 36 (8), 402–417. doi:10.1111/cgf.13088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.