391
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning

, & ORCID Icon
Pages 1592-1610 | Received 06 Jul 2020, Accepted 17 Dec 2020, Published online: 30 Dec 2020

References

  • ASPRS (American Society for Photogrammetry and Remote Sensing), 2013. LAS Specification Version 1.3-R13, 15 July.
  • Beyan, C. and Browman, H., 2020. Setting the stage for machine intelligence era in marine science. ICES Journal of Marine Science, 77 (4), 1267–1273. doi:10.1093/icesjms/fsaa084.
  • Boots, B. and Getis, A., 1988. Point pattern analysis. London, UK: SAGE Publications Scientific Geography Series (Series Editor: G. Thrall), 8, 93.
  • Calder, B. and Mayer, L., 2003. Automatic processing of high-rate, high-density multibeam echosounder data. Geochemistry, Geophysics, Geosystems, 4 (6), 22. doi:10.1029/2002GC000486.
  • Calder, B. and Rice, G., 2017. Computationally efficient variable resolution depth estimation. Computers & Geosciences, 106, 49–59. doi:10.1016/j.cageeo.2017.05.013.
  • Chust, G., et al., 2008. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuarine, Coastal and Shelf Science, 78, 633–643.
  • Collin, A., Archambault, P., and Long, B., 2008. Mapping the shallow water seabed habitat with the SHOALS. IEEE Transactions on Geoscience and Remote Sensing, 46, 10. doi:10.1109/TGRS.2008.920020.
  • Collin, A., Archambault, P., and Long, B., 2011. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners. PLoS ONE, 6 (6), e21265. doi:10.1371/journal.pone.0021265.
  • Collin, A., et al., 2018. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface intensity and drone imagery. International Journal of Remote Sensing, 39 (17), 5676–5688.
  • Dixon, P., 2002. Ripley’s K Function. In: Encyclopedia of Environmetrics. Vol. 3. Hoboken, New Jersey, USA: John Wiley and Sons, 1796–1803.
  • Eren, F., et al., 2019. Bottom characterization by using airborne lidar bathymetry (ALB) waveform features obtained from bottom residual analysis. Remote Sensing of Environment, 206, 260–274. doi:10.1016/j.rse.2017.12.035.
  • Fischler, M. and Bolles, J., 1981. Random sample consensus – a paradigm for model fitting with applications to image analysis and automated cartography. Communication of the ACM, 24 (6), 381–395.
  • Guo, B., et al., 2015. Classification of airborne scanning data using JointBoost. ISPRS Journal of Photogrammetry and Remote Sensing, 100, 71–83. doi:10.1016/j.isprsjprs.2014.04.015.
  • Hu, X. and Yuan, Y., 2016. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sensing, 8 (9), 730. 16 pp.. doi:10.3390/rs8090730.
  • Kang, Z., Yang, J., and Zhong, R., 2016. A Bayesian-network-based classification method integrating airborne LiDAR data with optical images. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9 (12), 1–11.
  • Kim, H. and Sohn, G., 2011. Random forests based multiple classifier system for power-line scene classification. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-5/W12, ISPRS Workshop, 29–31 August. Calgary, Canada, 6
  • Liu, X., 2008. Airborne lidar for DEM generation: some critical issues. Progress in Physical Geography, 32 (1), 31–49. doi:10.1177/0309133308089496.
  • Lowell, K. and Calder, B., 2019. Machine learning strategies for enhancing bathymetry extraction from imbalanced lidar point clouds. In: Proceedings Oceans 2019. Seattle, Washington, United States, 8.
  • Macon, C., et al., 2008. Seafloor and land cover classification through airborne lidar and hyperspectral data fusion. In: Proc: IEEE International Geosciences and Remote Sensing Symposium. Boston, Massachusetts, United States, 77–80.
  • Malde, K., et al., 2020. Machine intelligence and the data-driven future of marine science. ICES Journal of Marine Science, 77 (4), 1274–1285. doi:10.1093/icesjms/fsz057.
  • Mallet, C., et al., 2011. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (6), S71–S84.
  • Matikainen, L., Hyyppä, J., and Kaartinen, H., 2009. Comparison between first pulse and last pulse laser scanner data in the automatic detection of buildings. Photogrammetric Engineering and Remote Sensing, 75 (2), 133–146.
  • McFadden, D., 1974. Conditional logit analysis of qualitative choice behavior. In: P. Zarembka, ed.. Frontiers in Econometrics. Cambridge, Massachusetts, USA: Academic Press, 105–142.
  • Mohamed, H., et al., 2016. Bathymetry determination from high resolution imagery using ensemble learning algorithms in shallow lakes: case study El_Burullus Lake. International Journal of Environmental Science and Development, 7 (4), 7 pp. doi:10:7763/IJESD.2016.V7.787.
  • Mongus, D. and Zalik, B., 2012. Parameter-free ground filtering of LiDAR data for automatic DTM generation. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 1–12. doi:10.1016/j.isprsjprs.2011.10.002.
  • Nagle, D. and Wright, C., 2016. Algorithms used in the Airborne Lidar Processing System (ALPS). United States Dept. of the Interior/United States Geological Survey, Open File Report 2016–1046, 45 pp.
  • Nahhas, F., et al., 2018. Deep learning approach for building detection using LiDAR-orthophoto fusion.”. Journal of Sensors, Article ID: 7212307, 12. doi:10.1155/2018/7212307.
  • Narayanan, R., Kim, H., and Sohn, G., 2009. Classification of SHOALS 3000 bathymetric LiDAR signals using decision tree and ensemble techniques. In: Proc. TIC-STH 2009: IEEE Toronto International Conference – Science and Technology for Humanity. Toronto, Ontario, Canada, 462–467.
  • Nayegandhi, A., Brock, J., and Wright, C., 2009. Small-footprint, waveform-resolving lidar estimation of submerged and sub-canopy topography in coastal environments. International Journal of Remote Sensing, 4, 861–878.
  • Odland, J., 1988. Spatial Autocorrelation. London, UK: SAGE Publications Scientific Geography Series (Editor: G. Thrall), 9, 87.
  • Parrish, C., Rogers, J., and Calder, B., 2014. Assessment of waveform features for lidar uncertainty modeling in a coastal salt marsh environment. IEEE Geoscience and Remote Sensing Letters, 11 (2), 569–573. doi:10.1109/LGRS.2013.2280182.
  • Pittman, S., Costa, B., and Battista, T., 2009. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. Journal of Coastal Research, 53, 27–38.
  • RIEGL, 2017. LAS extrabytes implementation in RIEGL software (whitepaper). RIEGL Laser Measurement Systems. Available from: http://www.riegl.com/uploads/tx_pxpriegldownloads/Whitepaper_LASextrabytes_implementation_in-RIEGLSoftware_2017-12-04.pdf, 17.
  • Rogers, J., et al., 2015. Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters. Remote Sensing of the Environment, 156, 264–275. doi:10.1016/j.rse.2014.09.035.
  • Salameh, E., et al., 2019. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: A review. Remote Sensing, 11 (19), 2212, 32 pp. doi:10.3390/rs11192212.
  • Tuell, G., et al., 2005. SHOALS-enabled 3D benthic mapping. In: Proc. SPIE 5806: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Orlando, Florida, United States, 816–826
  • Tulldahl, H., 2014. Processing of airborne lidar bathymetry data for detailed sea floor mapping. In Proc. SPIE 9250: Electro-optical Remote Sensing, Photonic Technologies and Applications VIII; and (SPIE 92500E) Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II. Amsterdam, Netherlands, 16.
  • Tulldahl, M. and Wikström, S., 2012. Classification of aquatic macrovegetation and substrate with airborne lidar. Remote Sensing of the Environment, 121, 347–357. doi:10.1016/j.rse.2012.02.004.
  • Vojinovic, Z., et al., 2013. A machine learning approach for estimation of shallow water depths from optical satellite images and sonar measurements. Journal of Hydroinformatics, 15 (4), 17. doi:10.2166/hydro.2013.234.
  • Wozencraft, J. and Millar, D., 2005. Airborne lidar and integrated technologies for coastal mapping and nautical charting. Marine Technology Society Journal, 39 (3), 27–35.
  • Zhang, Z., et al., 2016. Discriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification. IEEE Transactions on Geoscience and Remote Sensing, 54 (12), 7309–7322. doi:10.1109/TGRS.2016.2599163.
  • Zhao, R., Pang, M., and Wang, J., 2018. Classifying airborne LiDAR point clouds via deep features learned by a multi-scale convolutional neural network. International Journal of Geographical Information Science, 32 (5), 960–979. doi:10.1080/13658816.2018.1431840.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.