1,027
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

An interactive detector for spatial associations

ORCID Icon & ORCID Icon
Pages 1676-1701 | Received 24 Jul 2020, Accepted 25 Jan 2021, Published online: 16 Apr 2021

References

  • Anselin, L., 2013. Spatial econometrics: methods and models. Netherlands: Springer Science & Business Media.
  • Anselin, L., Syabri, I., and Kho, Y., 2010. GeoDa: an introduction to spatial data analysis. Handbook of applied spatial analysis. Berlin, Heidelberg: Springer, 73–89.
  • Arbia, G., Griffith, D., and Haining, R., 1998. Error propagation modelling in raster GIS: overlay operations. International Journal of Geographical Information Science, 12 (2), 145–167. doi:10.1080/136588198241932.
  • Bai, H., et al. 2020. Incorporating spatial association into statistical classifiers: local pattern-based prior tuning. International Journal of Geographical Information Science, 34 (10), 2077–2114. doi:10.1080/13658816.2020.1737702.
  • Bai, L., et al., 2019. Quantifying the spatial heterogeneity influences of natural and socioeconomic factors and their interactions on air pollution using the geographical detector method: a case study of the Yangtze River Economic Belt, China. Journal of Cleaner Production, 232, 692–704. doi:10.1016/j.jclepro.2019.05.342.
  • Barco, S., et al. 2020. Trends in mortality related to pulmonary embolism in the European Region, 2000–15: analysis of vital registration data from the WHO Mortality Database. The Lancet Respiratory Medicine, 8 (3), 277–287. doi:10.1016/S2213-2600(19)30354-6.
  • Bureau of Meteorology Australian Government, 2019. Australian landscape water balance [ online]. Available from: http://www.bom.gov.au/water/landscape [Accessed May 2019].
  • Bustince, H., et al. 2010. Overlap functions. Nonlinear Analysis, Theory, Methods & Applications, 72 (3–4), 1488–1499. doi:10.1016/j.na.2009.08.033.
  • Calonico, S., Cattaneo, M.D., and Farrell, M.H., 2018. On the effect of bias estimation on coverage accuracy in nonparametric inference. Journal of the American Statistical Association, 113 (522), 767–779. doi:10.1080/01621459.2017.1285776.
  • Cang, X. and Luo, W., 2018. Spatial association detector (SPADE). International Journal of Geographical Information Science, 32 (10), 2055–2075. doi:10.1080/13658816.2018.1476693.
  • Cao, F., Ge, Y., and Wang, J., 2013. Optimal discretization for geographical detectors-based risk assessment. GIScience & Remote Sensing, 50 (1), 78–92. doi:10.1080/15481603.2013.778562.
  • Cao, F., Ge, Y., and Wang, J., 2014. Spatial data discretization methods for geocomputation. International Journal of Applied Earth Observation and Geoinformation, 26, 432–440. doi:10.1016/j.jag.2013.09.005
  • Ding, Y., et al., 2019. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. Journal of Cleaner Production, 211, 1480–1490. doi:10.1016/j.jclepro.2018.11.159.
  • Dubois, D. and Prade, H., 1983. Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30 (3), 183–224. doi:10.1016/0020-0255(83)90025-7.
  • Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2003. Geographically weighted regression: the analysis of spatially varying relationships. Chichester, UK: John Wiley & Sons.
  • Fotheringham, A.S., Charlton, M.E., and Brunsdon, C., 1998. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment & Planning A, 30 (11), 1905–1927. doi:10.1068/a301905.
  • Fotheringham, A.S. and Rogerson, P., 2013. Spatial analysis and GIS. Boca Raton, FL: CRC Press.
  • Fotheringham, A.S., Yang, W., and Kang, W., 2017. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107 (6), 1247–1265. doi:10.1080/24694452.2017.1352480.
  • Garrigues, S., et al. 2006. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 103 (1), 81–96. doi:10.1016/j.rse.2006.03.013.
  • Goodchild, M., Haining, R., and Wise, S., 1992. Integrating GIS and spatial data analysis: problems and possibilities. International Journal of Geographical Information Systems, 6 (5), 407–423. doi:10.1080/02693799208901923.
  • Goodchild, M.F., Yuan, M., and Cova, T.J., 2007. Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21 (3), 239–260. doi:10.1080/13658810600965271.
  • Goovaerts, P., 1997. Geostatistics for natural resources evaluation. New York, NY: Oxford University Press on Demand.
  • Guo, P., et al., 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach. Geoderma, 237-238, 49–59. doi:10.1016/j.geoderma.2014.08.009.
  • Haining, R., 2003. Spatial data analysis: theory and practice. London, UK: Cambridge University Press.
  • Haining, R., 2015a. Spatial Autocorrelation. In: J.D. Wright, ed. International Encyclopedia of the Social & Behavioral Sciences. 2nd Edn ed. Oxford: Elsevier, 105–110.
  • Haining, R., 2015b. Spatial Sampling. In: J.D. Wright, ed. International encyclopedia of the social & behavioral sciences. 2nd Edn ed. Oxford: Elsevier, 185–190.
  • Hengl, T., Heuvelink, G.B., and Stein, A., 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120 (1–2), 75–93. doi:10.1016/j.geoderma.2003.08.018.
  • Huang, B., Wu, B., and Barry, M., 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24 (3), 383–401. doi:10.1080/13658810802672469.
  • Jacoby, W.G., 2000. Loess:: a nonparametric, graphical tool for depicting relationships between variables. Electoral Studies, 19 (4), 577–613. doi:10.1016/S0261-3794(99)00028-1.
  • Johnston, R., et al. 2003. ASRIS: the database. Australian Journal of Soil Research, 41 (6), 1021–1036. doi:10.1071/SR02033.
  • Ju, H., et al. 2016. Driving forces and their interactions of built-up land expansion based on the geographical detector – a case study of Beijing, China. International Journal of Geographical Information Science, 30 (11), 2188–2207. doi:10.1080/13658816.2016.1165228.
  • Kammann, E.E. and Wand, M.P., 2003. Geoadditive models. Journal of the Royal Statistical Society. Series C, Applied Statistics, 52 (1), 1–18.
  • Kim, Y.-H., Choe, K.-U., and Ri, R.-K., 2019. Application of fuzzy logic and geometric average: a Cu sulfide deposits potential mapping case study from Kapsan Basin, DPR Korea. Ore Geology Reviews, 107, 239–247. doi:10.1016/j.oregeorev.2019.02.026
  • Lavrakas, P.J., 2008. Encyclopedia of Survey Research Methods. Thousand Oaks, CA: Sage Publications.
  • Li, J., et al. 2011. Application of machine learning methods to spatial interpolation of environmental variables. Environmental Modelling and Software, 26 (12), 1647–1659. doi:10.1016/j.envsoft.2011.07.004.
  • Merchant, C.J., Saux-Picart, S., and Waller, J., 2020. Bias correction and covariance parameters for optimal estimation by exploiting matched in-situ references. Remote Sensing of Environment, 237, 111590. doi:10.1016/j.rse.2019.111590
  • Nakaya, T., et al. 2005. Geographically weighted poisson regression for disease association mapping. Statistics in Medicine, 24 (17), 2695–2717. doi:10.1002/sim.2129.
  • Phillips, T., et al. 2011. Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory. Remote Sensing of Environment, 115 (9), 2292–2301. doi:10.1016/j.rse.2011.04.029.
  • Qiao, P., et al., 2019. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Science of the Total Environment, 664, 392–413. doi:10.1016/j.scitotenv.2019.01.310.
  • Ren, Y., et al. 2014. Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landscape Ecology, 29 (10), 1741–1758. doi:10.1007/s10980-014-0094-z.
  • Shi, W., Cheung, C.-K., and Tong, X., 2004. Modelling error propagation in vector-based overlay analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 59 (1–2), 47–59. doi:10.1016/j.isprsjprs.2004.05.003.
  • Song, Y., et al. 2018. Segment-based spatial analysis for assessing road infrastructure performance using monitoring observations and remote sensing data. Remote Sensing, 10 (11), 1696. doi:10.3390/rs10111696.
  • Song, Y., et al. 2019. Traffic volume prediction with segment-based regression kriging and its implementation in assessing the impact of heavy vehicles. IEEE Transactions on Intelligent Transportation Systems, 20 (1), 232–243. doi:10.1109/TITS.2018.2805817.
  • Song, Y., et al. 2020a. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GIScience & Remote Sensing, 57 (5), 593–610. doi:10.1080/15481603.2020.1760434.
  • Song, Y., et al. 2020b. A spatial heterogeneity-based segmentation model for analyzing road deterioration network data in multi-scale infrastructure systems. IEEE Transactions on Intelligent Transportation Systems, 1–11, Early Access. doi:10.1109/TITS.2020.3001193
  • The Government of Western Australia, Main Roads Western Australia and ARRB Australia Road Research Board (ARRB), 2018. An evaluation of the Traffic Speed Deflectometer (TSD) for Main Roads Western Australia. Leederville: ARRB.
  • Wan, Z., Hook, S., and Hulley, G., 2015. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day L3 global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC, 10. https://doi.org/10.5067/MODIS/MOD11A2.006
  • Wang, J., et al. 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 24 (1), 107–127. doi:10.1080/13658810802443457.
  • Wang, J., Zhang, T., and Fu, B., 2016. A measure of spatial stratified heterogeneity. Ecological Indicators, 67, 250–256. doi:10.1016/j.ecolind.2016.02.052
  • Wang, L. and Chen, L., 2018. The impact of new transportation modes on population distribution in Jing-Jin-Ji region of China. Scientific Data, 5 (1), 170204. doi:10.1038/sdata.2017.204.
  • Wang, S., et al., 2015. An effective algorithm for lines and polygons overlay analysis using uniform spatial grid indexing. In: 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM), Fuzhou, China. IEEE, 175–179.
  • Yu, H., et al. 2019a. Inference in multiscale geographically weighted regression. Geographical Analysis, 52 (1), 87–106. doi:10.1111/gean.12189.
  • Yu, H. and Peng, Z.-R., 2019. Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted poisson regression. Journal of Transport Geography, 75, 147–163. doi:10.1016/j.jtrangeo.2019.01.004
  • Yu, Q., Liu, D., and Wang, S., 2018. A fuzzy overlay analysis model for raster map layers. Journal of Image and Graphics, 9 (7), 832–836.
  • Yu, S., et al., 2019b. Estimation and inference for generalized geoadditive models. Journal of the American Statistical Association, 15 (530), 761–774.
  • Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3 (1), 28–44. doi:10.1109/TSMC.1973.5408575.
  • Zhao, Y., et al., 2020. Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environmental Pollution, 263, 114338. doi:10.1016/j.envpol.2020.114338.
  • Zhou, C., et al. 2020. The contribution rate of driving factors and their interactions to temperature in the Yangtze River Delta region. Atmosphere, 11 (1), 32. doi:10.3390/atmos11010032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.