849
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Pattern-based identification and mapping of landscape types using multi-thematic data

ORCID Icon & ORCID Icon
Pages 1634-1649 | Received 15 Jun 2020, Accepted 13 Feb 2021, Published online: 02 Mar 2021

References

  • Barnsley, M.J. and Barr, S.L., 1996. Inferring urban land use from satellite sensor images using kernel-based spatial reclassification. Photogrammetric Engineering and Remote Sensing, 62 (8), 949–958.
  • Cardille, J.A., et al., 2012. Representative landscapes in the forested area of Canada. Environmental Management, 49 (1), 163–173. doi:10.1007/s00267-011-9785-2
  • Cardille, J.A. and Lambois, M., 2010. From the redwood forest to the Gulf Stream waters: human signature nearly ubiquitous in representative US landscapes. Frontiers in Ecology and the Environment, 8 (3), 130–134. doi:10.1890/080132
  • Cha, S.-H., 2007. Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences, 1 (4), 300–307.
  • Chang, P. and Krumm, J., 1999. Object recognition with color cooccurrence histograms. In: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149). Fort Collins, CO: IEEE Comput. Soc, 498–504.
  • Drost, H.G., 2018. Philentropy: information theory and distance quantification with R. Journal of Open Source Software, 3 (26), 765. http://joss.theoj.org/papers/10.21105/joss.00765.
  • ECMWF, 2019. ICDR land cover product user guide and specification.
  • Eddelbuettel, D. and François, R., 2011. Rcpp: seamless R and C++ integration. Journal of Statistical Software, 40 (8), 1–18. http://www.jstatsoft.org/v40/i08/
  • Eddelbuettel, D. and Sanderson, C., 2014. RcppArmadillo: accelerating R with high- performance C++ linear algebra. Computational Statistics & Data Analysis, 71, 1054–1063. doi:10.1016/j.csda.2013.02.005.
  • Haralick, R.M., Shanmugam, K., and Its’Hak, D., 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC, 3 (6), 610–621. doi:10.1109/TSMC.1973.4309314
  • Heikkinen, R.K., et al., 2004. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. Journal of Applied Ecology, 41 (5), 824–835. doi:10.1111/j.0021-8901.2004.00938.x
  • Hengl, T., et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PloS One, 12 (2), e0169748. doi:10.1371/journal.pone.0169748
  • Jasiewicz, J., Netzel, P., and Stepinski, T., 2015. GeoPAT: a toolbox for pattern-based information retrieval from large geospatial databases. Computers & Geosciences, 80, 62–73. doi:10.1016/j.cageo.2015.04.002
  • Jasiewicz, J., Stepinski, T., and Niesterowicz, J., 2018. Multi-scale segmentation algorithm for pattern-based partitioning of large categorical rasters. Computers & Geosciences, 118, 122–130. doi:10.1016/j.cageo.2018.06.003
  • Karagulle, D., et al., 2017. Modeling global hammond landform regions from 250-m elevation data. Transactions in GIS, 21 (5), 1040–1060. doi:10.1111/tgis.12265
  • Lin, J., 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37 (1), 145–151. doi:10.1109/18.61115
  • Liu, J., et al., 2017. Alike scene retrieval from land-cover products based on the label co-occurrence matrix (LCM). Remote Sens, 9, 912. doi:10.3390/rs9090912
  • Long, J., Nelson, T., and Wulder, M., 2010. Regionalization of landscape pattern indices using multivariate cluster analysis. Environmental Management, 46 (1), 134–142. doi:10.1007/s00267-010-9510-6
  • Maaten, L.V.D. and Hinton, G., 2008. Visualizing data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.
  • Metzger, M.J., et al., 2013. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22 (5), 630–638. doi:10.1111/geb.12022
  • Mücher, C.A., et al., 2010. A new European landscape classification (LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes. Ecological Indicators, 10 (1), 87–103. doi:10.1016/j.ecolind.2009.03.018
  • Netzel, P. and Stepinski, T.F., 2014. Pattern-based assessment of land cover change on continental scale with application to NLCD 2001–2006. IEEE Transactions on Geoscience and Remote Sensing, 53 (4), 1773–1781. doi:10.1109/TGRS.2014.2348715
  • Niesterowicz, J. and Stepinski, T.F., 2013. Regionalization of multi-categorical landscapes using machine vision methods. Applied Geography, 45, 250–258. doi:10.1016/j.apgeog.2013.09.023
  • Niesterowicz, J. and Stepinski, T.F., 2016. On using landscape metrics for landscape similarity search. Ecological Indicators, 64, 20–30. doi:10.1016/j.ecolind.2015.12.027
  • Niesterowicz, J. and Stepinski, T.F., 2017. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover. International Journal of Applied Earth Observation and Geoinformation, 62, 192–200. doi:10.1016/j.jag.2017.06.012
  • Niesterowicz, J., Stepinski, T.F., and Jasiewicz, J., 2016. Unsupervised regionalization of the United States into landscape pattern types. International Journal of Geographical Information Science, 30 (7), 1450–1468. doi:10.1080/13658816.2015.1134796
  • Nowosad, J., 2020. Comat: co-occurrence matrices of spatial data. R package version 0.8.4. Available from: https://nowosad.github.io/comat/
  • Nowosad, J., 2021. Motif: an open-source R tool for pattern-based spatial analysis. Landscape Ecology, 36 (1), 26–43. doi:10.1007/s10980-020-01135-0
  • Nowosad, J., Stepinski, T.F., and Netzel, P., 2019. Global assessment and mapping of changes in mesoscale landscapes: 1992–2015. International Journal of Applied Earth Observation and Geoinformation, 78, 332–340. doi:10.1016/j.jag.2018.09.013
  • Nowosad, J. and Stepinski, T.G.F., 2018. Global inventory of landscape patterns and latent variables of landscape spatial configuration. Ecological Indicators, 89, 159–167. doi:10.1016/j.ecolind.2018.02.007
  • O’Neill, R.V., et al., 1988. Indices of landscape pattern. Landscape Ecology, 1 (3), 153–162. doi:10.1007/BF00162741
  • Omernik, J.M. and Griffith, G.E., 2014. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management, 54 (6), 1249–1266. doi:10.1007/s00267-014-0364-1
  • Partington, K. and Cardille, J., 2013. Uncovering dominant land-cover patterns of Quebec: representative landscapes, spatial clusters, and fences. Land, 2, 756–773. http://www.mdpi.com/2073-445X/2/4/756/.
  • Pebesma, E., 2020. Stars: spatiotemporal arrays, raster and vector data cubes. Available from: Https://rspatial.github.io/stars/,https://github.com/r-spatial/stars/
  • Peng, F., et al., 2019. Content-based search of earth observation data archives using open-access multitemporal land cover and terrain products. International Journal of Applied Earth Observation and Geoinformation, 81, 13–26. doi:10.1016/j.jag.2019.05.006
  • R Core Team, 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: https://www.R-project.org/
  • Rubner, Y., et al., 2001. Empirical evaluation of dissimilarity measures for color and texture. Computer Vision and Image Understanding, 84 (1), 25–43. doi:10.1006/cviu.2001.0934
  • Sayre, R., et al. 2014. A new map of global ecological land units – an ecophysiographic stratification approach. Washington, DC: Association of American Geographers. Technical Report. Tech. rep.
  • Shannon, C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal, 27 (3), 55. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Sharifi, A., 1999. Remote sensing and decision support systems. In: F. van der Meer, eds. Spatial statistics for remote sensing. Dordrecht: Springer Netherlands, Vol. 1, 243–260.
  • Simensen, T., Halvorsen, R., and Erikstad, L., 2018. Methods for landscape characterisation and mapping: a systematic review. Land Use Policy, 75, 557–569. doi:10.1016/j.landusepol.2018.04.022
  • Sokal, R.R. and Michener, C., 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.
  • Stepinski, T.F., Netzel, P., and Jasiewicz, J., 2013. LandEx–a GeoWeb tool for query and retrieval of spatial patterns in land cover datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (1), 257–266. doi:10.1109/JSTARS.2013.2260727
  • Terribile, F., et al. 2015. A web-based spatial decision supporting system for land management and soil conservation. Solid Earth, 6 (3), 903–928. doi:10.5194/se-6-903-2015
  • Turner, M.G. and Gardner, R.H., 1991. Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity. New York: Springer–Verlag
  • Vadivel, A., Sural, S., and Majumdar, A.K., 2007. An integrated color and intensity co-occurrence matrix. Pattern Recognition Letters, 28 (8), 974–983. doi:10.1016/j.patrec.2007.01.004
  • Wascher, D.M., 2005. European landscape character areas: typologies, cartography and indicators for the assessment of sustainable landscapes (No. 1254). Wageningen: Landscape Europe. Technical Report.
  • Wickham, J.D. and Norton, D.J., 1994. Mapping and analyzing landscape patterns. Landscape Ecology, 9 (1), 7–23. doi:10.1007/BF00135075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.