199
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

mcRPL: a general purpose parallel raster processing library on distributed heterogeneous architectures

, , , , , & show all
Pages 2043-2066 | Received 02 Dec 2022, Accepted 31 Jul 2023, Published online: 14 Aug 2023

References

  • Abdul, J., et al., 2016. Geospatial Hadoop (GS-Hadoop) an efficient mapreduce based engine for distributed processing of shapefiles. In: 2016 2nd international conference on advances in computing, communication, & automation (ICACCA) (IEEE), 1–7.
  • Alkathiri, M., Jhummarwala, A., and Potdar, M.B., 2019. Multi-dimensional geospatial data mining in a distributed environment using MapReduce. Journal of Big Data, 6 (1), 82.
  • Carabaño, J., Westerholm, J., and Sarjakoski, T., 2018. A compiler approach to map algebra: automatic parallelization, locality optimization, and GPU acceleration of raster spatial analysis. GeoInformatica, 22 (2), 211–235.
  • Chapman, B., Jost, G., and Van Der Pas, R., 2007. Using OpenMP: portable shared memory parallel programming. Cambridge, MA: MIT Press.
  • Cheng, J., Grossman, M., and McKercher, T., 2014. Professional CUDA® C programming. Hoboken: Wiley.
  • Gao, F., et al., 2006. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44 (8), 2207–2218.
  • Gao, F., and Yue, P., 2018. A spark-based parallel framework for geospatial raster data processing. In: 2018 7th international conference on agro-geoinformatics (agro-geoinformatics) (IEEE), 2018: 1–4.
  • Gao, H., et al., 2022. cuFSDAF: an enhanced flexible spatiotemporal data fusion algorithm parallelized using graphics processing units. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16.
  • Gropp, W., et al., 1999. Using MPI: portable parallel programming with the message-passing interface. Cambridge, MA: MIT Press.
  • Guan, Q., et al., 2014. pRPL 2.0: improving the parallel raster processing library. Transactions in GIS, 18, 25–52.
  • Guan, Q., et al., 2016. A hybrid parallel cellular automata model for urban growth simulation over GPU/CPU heterogeneous architectures. International Journal of Geographical Information Science, 30 (3), 494–514.
  • Guan, Q., et al., 2018. High-performance GeoComputation with the parallel raster processing library. In: Geocomputational analysis and modeling of regional systems. Cham: Springer, 55–74.
  • Guan, Q., and Clarke, K.C., 2010. A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. International Journal of Geographical Information Science, 24 (5), 695–722.
  • Guan, Q., Kyriakidis, P.C., and Goodchild, M.F., 2011. A parallel computing approach to fast geostatistical areal interpolation. International Journal of Geographical Information Science, 25 (8), 1241–1267.
  • Li, Z., et al., 2020. Introduction to big data computing for geospatial applications. ISPRS International Journal of Geo-Information, 9 (8), 487.
  • Liang, X., et al., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Computers, Environment and Urban Systems, 85, 101569.
  • Liu, X., et al., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168, 94–116.
  • López-Fandiño, J., et al., 2015. Efficient ELM-based techniques for the classification of hyperspectral remote sensing images on commodity GPUs. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (6), 2884–2893.
  • Miao, J., Guan, Q., and Hu, S., 2017. pRPL + pGTIOL: the marriage of a parallel processing library and a parallel I/O library for big raster data. Environmental Modelling & Software, 96, 347–360.
  • Navarro, C.A., Hitschfeld-Kahler, N., and Mateu, L., 2014. A survey on parallel computing and its applications in data-parallel problems using GPU architectures. Communications in Computational Physics, 15 (2), 285–329.
  • Netzel, P., and Slopek, J., 2021. Comparison of different implementations of a raster map calculator. Computers & Geosciences, 154, 104824.
  • Pijanowski, B.C., et al., 2014. A big data urban growth simulation at a national scale: configuring the GIS and neural network based Land Transformation Model to run in a High Performance Computing (HPC) environment. Environmental Modelling & Software, 51, 250–268.
  • Prasad, S.K., et al., 2017. Parallel processing over spatial-temporal datasets from geo, bio, climate and social science communities: a research roadmap. In: IEEE international congress on big data (bigdata congress) (IEEE), 232–250.
  • Qin, C., et al., 2014. A strategy for raster-based geocomputation under different parallel computing platforms. International Journal of Geographical Information Science, 28 (11), 2127–2144.
  • Shi, X., and Ye, F., 2013. Kriging interpolation over heterogeneous computer architectures and systems. GIScience & Remote Sensing, 50 (2), 196–211.
  • Shook, E., et al., 2016. Parallel cartographic modeling: a methodology for parallelizing spatial data processing. International Journal of Geographical Information Science, 30 (12), 2355–2376.
  • Tang, W., et al., 2018. Parallel computing for geocomputational modeling. In: Geocomputational analysis and modeling of regional systems. Cham: Springer, 37–54.
  • Tang, W., and Wang, S., 2020. High performance computing for geospatial applications. Cham: Springer International Publishing.
  • Trobec, R., et al., 2020. Introduction to parallel computing: from algorithms to programming on state-of-the-art platforms. Cham: Springer International Publishing.
  • Vatsavai, R., et al., 2012. Spatiotemporal data mining in the era of big spatial data: algorithms and applications. In: Proceedings of the 1st ACM SIGSPATIAL international workshop on analytics for big geospatial data (ACM), 1–10.
  • Wang, Y., et al., 2022. A load-balancing strategy for data domain decomposition in parallel programming libraries of raster-based geocomputation. International Journal of Geographical Information Science, 36 (5), 968–991.
  • Wu, F., 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions. International Journal of Geographical Information Science, 16 (8), 795–818.
  • Yang, X., et al., 2022. Enhanced spatial-temporal Savitzky-Golay method for reconstructing high-quality NDVI time series: reduced sensitivity to quality flags and improved computational efficiency. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–17.
  • Zhu, L., et al., 2019. A modular and parallelized watershed modeling framework. Environmental Modelling & Software, 122, 104526.
  • Zhu, X., et al., 2016. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 172, 165–177.
  • Zhukov, B., et al., 1999. Unmixing-based multisensor multiresolution image fusion. IEEE Transactions on Geoscience and Remote Sensing, 37 (3), 1212–1226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.