536
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reasoning cartographic knowledge in deep learning-based map generalization with explainable AI

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 05 Jan 2024, Accepted 14 Jun 2024, Published online: 20 Jun 2024

References

  • Arrieta, A.B., et al., 2020. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.
  • Bader, M., Barrault, M., and Weibel, R., 2005. Building displacement over a ductile truss. International Journal of Geographical Information Science, 19 (8-9), 915–936.
  • Barrault, M., et al., 2001. Integrating multi-agent, object-oriented and algorithmic techniques for improved automated map generalization. Proceedings 20th International Cartographic Conference, 1, 2110–2116.
  • Beard, K., 1991. Constraints on rule formation. In: Map Generalization: Making Rules for Knowledge Representation. London, England: Addison-Wesley Longman Ltd., 121–135.
  • Bokhovkin, A., and Burnaev, E., 2019. Boundary loss for remote sensing imagery semantic segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11555 LNCS (14), 388–401.
  • Bradski, G., 2000. The openCV library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25 (11), 120–123.
  • Brassel, K.E., and Weibel, R., 1988. A review and conceptual framework of automated map generalization. International Journal of Geographical Information Systems, 2 (3), 229–244.
  • Burghardt, D., Duchêne, C., and Mackaness, W. (Eds.). 2014. Abstracting Geographic Information in a Data Rich World: Methodologies and Applications of Map Generalisation. Cham Switzerland: Springer International Publishing.
  • Cheng, B., et al., 2021. Boundary IoU: improving object-centric image segmentation evaluation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, Tennessee, 15329–15337.
  • Courtial, A., Touya, G., and Zhang, X., 2022. Representing vector geographic information as a tensor for deep learning based map generalisation. AGILE: GIScience Series, 3, 1–8.
  • Courtial, A., Touya, G., and Zhang, X., 2023. Deriving map images of generalised mountain roads with generative adversarial networks. International Journal of Geographical Information Science, 37 (3), 499–528.
  • Courtial, A., Touya, G., and Zhang, X., 2024. DeepMapScaler: a workflow of deep neural networks for the generation of generalised maps. Cartography and Geographic Information Science, 51 (1), 41–59.
  • Du, J., et al., 2022. Polyline simplification based on the artificial neural network with constraints of generalization knowledge. Cartography and Geographic Information Science, 49 (4), 313–337.
  • Feng, Y., Thiemann, F., and Sester, M., 2019. Learning cartographic building generalization with deep convolutional neural networks. ISPRS International Journal of Geo-Information, 8 (6), 258.
  • Fu, C., et al., 2023. Keeping walls straight: data model and training set size matter for deep learning in building generalization. Cartography and Geographic Information Science, 51 (1), 1–16.
  • Gao, Y., et al., 2024. Going beyond XAI: a systematic survey for explanation-guided learning. ACM Computing Surveys, 56 (7), 1–39.
  • Harrie, L.E., 1999. The constraint method for solving spatial conflicts in cartographic generalization. Cartography and Geographic Information Science, 26 (1), 55–69.
  • Harrie, L., et al., 2024. Machine learning in cartography. Cartography and Geographic Information Science, 51 (1), 1–19.
  • Hasanpour Zaryabi, E., et al., 2022. Unboxing the black box of attention mechanisms in remote sensing big data using XAI. Remote Sensing, 14 (24), 6254.
  • Hsu, C.-Y., and Li, W., 2023. Explainable GeoAI: can saliency maps help interpret artificial intelligence’s learning process? an empirical study on natural feature detection. International Journal of Geographical Information Science, 37 (5), 963–987.
  • Hu, Y., et al., 2024. A five-year milestone: reflections on advances and limitations in GeoAI research. Annals of GIS, 30 (1), 1–14.
  • Janowicz, K., et al., 2020. GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34 (4), 625–636.
  • Janowicz, K., et al., 2022. Six GIScience ideas that must die. AGILE: GIScience Series, 3, 1–8.
  • Kang, Y., Gao, S., and Roth, R.E., 2024. Artificial intelligence studies in cartography: a review and synthesis of methods, applications, and ethics. Cartography and Geographic Information Science, 1–32.
  • Kang, Y., et al., 2020. Towards cartographic knowledge encoding with deep learning: a case study of building generalization. The 23rd International Research Symposium on Cartography and GIScience, 2019, 1–6.
  • Kervadec, H., et al., 2021. Boundary loss for highly unbalanced segmentation. Medical Image Analysis, 67, 101851.
  • Kipf, T.N., and Welling, M., 2019. Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, Toulon, France, 1–14.
  • Kokhlikyan, N., et al., 2020. Captum: A unified and generic model interpretability library for PyTorch. (arXiv:2009.07896), arXiv.
  • Larochelle, H., et al., 2009. Exploring Strategies for Training Deep Neural Networks. Journal of Machine Learning Research, 1, 1–40.
  • LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature, 521 (7553), 436–444.
  • Li, J., et al., 2023. Interpreting deep learning models for traffic forecast: a case study of unet. SSRN Electronic Journal.
  • Mackaness, W.A., Ruas, A., and Sarjakoski, L.T., 2007. Generalisation of geographic information: Cartographic modelling and applications. Amsterdam, Netherlands: Elsevier.
  • Mai, G., et al., 2022. Towards general-purpose representation learning of polygonal geometries. GeoInformatica, 27 (2), 289–340.
  • Müller, J.-C., et al., 1995. Generalization: State of the art and issues. In: J.-C. Müller, J. P. Lagrange, & R. Weibel, eds. GIS And Generalisation: Methodology and Practice. Oxfordshire, UK: Taylor & Francis.
  • Powitz, B.M., 1993. Computer-assisted generalization-an important software tool in GIS. International Archives of Photogrammetry and Remote Sensing, 29, 664–672.
  • Ruas, A., and Duchêne, C.A., 2007. A prototype generalisation system based on the multi-agent system paradigm. In: Generalisation of Geographic Information. Amsterdam, Netherlands: Elsevier.
  • Saeidi, V., et al., 2023. Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence. Geomatics, Natural Hazards and Risk, 14 (1), 2225691.
  • Sester, M., 2005. Optimization approaches for generalization and data abstraction. International Journal of Geographical Information Science, 19 (8-9), 871–897.
  • Shi, M., et al., 2023. Thinking geographically about AI sustainability. AGILE: GIScience Series, 4, 1–7.
  • Shrikumar, A., Greenside, P., and Kundaje, A., 2017. Learning important features through propagating activation differences. In: Proceedings of the 34 Th International Conference on Machine Learning. https://proceedings.mlr.press/v70/sundararajan17a.html
  • Simonyan, K., Vedaldi, A., and Zisserman, A., 2014. Deep inside convolutional networks: visualising image classification models and saliency maps. (arXiv:1312.6034). arXiv. http://arxiv.org/abs/1312.6034
  • Sundararajan, M., Taly, A., and Yan, Q., 2017. Axiomatic attribution for deep networks. In: Proceedings of the 34 Th international conference on machine learning. http://arxiv.org/abs/1703.01365
  • Swiss Society of Cartography 2005. Topographic Maps: Map Graphics and Generalisation (Issue Issue 17 of Cartographic publication series).
  • van der Velden, B.H.M., et al., 2022. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Medical Image Analysis, 79, 102470.
  • Weibel, R., and Dutton, G., 1998. Constraint-based automated map generalization. In: Proceedings 8th International Symposium on Spatial Data Handling, Lisbon, Portugal, 214–224.
  • Weibel, R., and Dutton, G., 1999. Generalising spatial data and dealing with multiple representations. Geographical Information Systems, 1, 125–155.
  • Weibel, R., Keller, S., and Reichenbacher, T., 1995. Overcoming the knowledge acquisition bottleneck in map generalization: The role of interactive systems and computational intelligence. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 988, 139–156.
  • Wilson, I.D., Ware, J.M., and Ware, J.A., 2003. A Genetic algorithm approach to cartographic map generalisation. Computers in Industry, 52 (3), 291–304.
  • Xiao, T., et al., 2023. A point selection method in map generalization using graph convolutional network model. Cartography and Geographic Information Science, 51 (1), 20–40.
  • Xing, J., and Sieber, R., 2021. Integrating XAI and GeoAI. GIScience 2021 Short Paper Proceedings. In: 11th International Conference on Geographic Information Science. September 27-30, Poznań, Poland (Online).
  • Xing, J., and Sieber, R., 2023. The challenges of integrating explainable artificial intelligence into GeoAI. Transactions in GIS, 27 (3), 626–645.
  • Yan, X., et al., 2020. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps. International Journal of Geographical Information Science, 35 (3), 490–512.
  • Yan, X., et al., 2022. A graph deep learning approach for urban building grouping. Geocarto International, 37 (10), 2944–2966.
  • Yang, J., Matsushita, B., and Zhang, H., 2023. Improving building rooftop segmentation accuracy through the optimization of UNet basic elements and image foreground-background balance. ISPRS Journal of Photogrammetry and Remote Sensing, 201, 123–137.
  • Yu, W., and Chen, Y., 2022. Data‐driven polyline simplification using a stacked autoencoder‐based deep neural network. Transactions in GIS, 26 (5), 2302–2325. https://doi.org/10.1111/tgis.12965
  • Zhang, Z., Liu, Q., and Wang, Y., 2018. Road extraction by deep residual U-net. IEEE Geoscience and Remote Sensing Letters, 15 (5), 749–753.
  • Zheng, J., et al., 2021. Deep graph convolutional networks for accurate automatic road network selection. ISPRS International Journal of Geo-Information, 10 (11), 768.
  • Zhou, Z., Fu, C., and Weibel, R., 2022. Building simplification of vector maps using graph convolutional neural networks. Abstracts of the Ica, 5, 1–2.
  • Zhou, Z., Fu, C., and Weibel, R., 2023. Move and remove: Multi-task learning for building simplification in vector maps with a graph convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 205–218.