0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review of crowdsourced geographic information for land-use and land-cover mapping: current progress and challenges

, , , , , & show all
Received 24 Nov 2023, Accepted 08 Jul 2024, Published online: 14 Jul 2024

References

  • Alialy, R., et al., 2018. A review on the applications of crowdsourcing in human pathology. Journal of Pathology Informatics, 9 (1), 2.
  • Andrade, R., Alves, A., and Bento, C., 2020. POI mining for land use classification: a case study. ISPRS International Journal of Geo-Information, 9 (9), 493.
  • Antoniou, V., et al., 2016. Investigating the feasibility of geo-tagged photographs as sources of land cover input data. ISPRS International Journal of Geo-Information, 5 (5), 64.
  • Anugraha, A.S., Chu, H.-J., and Ali, M.Z., 2020. Social sensing for urban land use identification. ISPRS International Journal of Geo-Information, 9 (9), 550.
  • Arsanjani, J.J., et al., 2013. Toward mapping land-use patterns from volunteered geographic information. International Journal of Geographical Information Science, 27 (12), 2264–2278.
  • Arsanjani, J.J., and Vaz, E., 2015. An assessment of a collaborative mapping approach for exploring land use patterns for several European metropolises. International Journal of Applied Earth Observation and Geoinformation, 35, 329–337.
  • Baer, M.F., Wartmann, F.M., and Purves, R.S., 2019. StarBorn: towards making in-situ land cover data generation fun with a location-based game. Transactions in GIS, 23 (5), 1008–1028.
  • Bai, L., et al., 2023. Geographic mapping with unsupervised multi-modal representation learning from VHR images and POIs. ISPRS Journal of Photogrammetry and Remote Sensing, 201, 193–208.
  • Bao, H., et al., 2020. DFCNN-based semantic recognition of urban functional zones by integrating remote sensing data and POI data. Remote Sensing, 12 (7), 1088.
  • Barrington-Leigh, C., and Millard-Ball, A., 2017. The world’s user-generated road map is more than 80% complete. PLoS One, 12 (8), e0180698.
  • Berke, P., et al., 2021. Using a resilience scorecard to improve local planning for vulnerability to hazards and climate change: an application in two cities. Cities, 119 (12), 103408.
  • Bogaert, P., and Gengler, S., 2018. Bayesian maximum entropy and data fusion for processing qualitative data: theory and application for crowdsourced cropland occurrences in Ethiopia. Stochastic Environmental Research and Risk Assessment, 32 (3), 815–831.
  • Boucher, C., and Noyer, J.-C., 2017. A general framework for 3-D parameters estimation of roads using GPS, OSM and DEM Data. Sensors, 18 (1), 41.
  • Brown, G., 2013. Relationships between spatial and non-spatial preferences and place-based values in national forests. Applied Geography, 44, 1–11.
  • Brown, G., Kelly, M., and Whitall, D., 2014. Which 'public’? Sampling effects in public participation GIS (PPGIS) and volunteered geographic information (VGI) systems for public lands management. Journal of Environmental Planning and Management, 57 (2), 190–214.
  • Calabrese, F., et al., 2013. Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transportation Research Part C: Emerging Technologies, 26, 301–313.
  • Camboim, S.P., Bravo, J.V.M., and Sluter, C.R., 2015. An investigation into the completeness of, and the updates to, OpenStreetMap data in a Heterogeneous area in Brazil. ISPRS International Journal of Geo-Information, 4 (3), 1366–1388.
  • Cao, R., et al., 2020. Deep learning-based remote and social sensing data fusion for urban region function recognition. Isprs Journal of Photogrammetry and Remote Sensing, 163, 82–97.
  • Cao, S., et al., 2021. Functional classification of urban parks based on urban functional zone and crowd-sourced geographical data. ISPRS International Journal of Geo-Information, 10 (12), 824.
  • Chang, S., et al., 2020. Mapping the essential urban land use in Changchun by applying random forest and multi-source geospatial data. Remote Sensing, 12 (15), 2488.
  • Chen, D., et al., 2022. A hierarchical approach for fine-grained urban villages recognition fusing remote and social sensing data. International Journal of Applied Earth Observation and Geoinformation, 106, 102661.
  • Chen, Y., et al., 2021. Automatic mapping of urban green spaces using a geospatial neural network. Giscience & Remote Sensing, 58 (4), 624–642.
  • Chen, Y., et al., 2023a. Mapping urban functional areas using multi-source remote sensing images and open big data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 7919–7931.
  • Chen, Y., et al., 2023b. Quality assessment of global ocean island datasets. ISPRS International Journal of Geo-Information, 12 (4), 168.
  • Chen, Y.M., et al., 2017. Delineating urban functional areas with building-level social media data: a dynamic time warping (DTW) distance based k-medoids method. Landscape and Urban Planning, 160, 48–60.
  • Choi, W., 2023. Assessment of the capacity of ChatGPT as a self-learning tool in medical pharmacology: a study using MCQs. BMC Medical Education, 23 (1), 864.
  • Comber, A., et al., 2016. Crowdsourcing: it matters who the crowd are. The impacts of between group variations in recording land cover. PLoS One, 11 (7), e0158329.
  • Cui, L., et al., 2022. The verification of land cover datasets with the geo-tagged natural scene images. ISPRS International Journal of Geo-Information, 11 (11), 567.
  • Dell’acqua, F., et al., 2018. A novel strategy for very-large-scale cash-crop mapping in the context of weather-related risk assessment, combining global satellite multispectral datasets, environmental constraints, and in situ acquisition of geospatial data. Sensors, 18 (2), 591.
  • Deng, Y., and He, R., 2022. Refined urban functional zone mapping by integrating open-source data. ISPRS International Journal of Geo-Information, 11 (8), 421.
  • Donchyts, G., et al., 2016. A 30 m resolution surface water mask including estimation of positional and thematic differences using Landsat 8, SRTM and OpenStreetMap: a case study in the Murray-Darling Basin, Australia. Remote Sensing, 8 (5), 386.
  • Dong, X., et al., 2020. Exploring impact of spatial unit on urban land use mapping with multisource data. Remote Sensing, 12 (21), 3597.
  • Dorn, H., Vetter, M., and Höfle, B., 2014. GIS-based roughness derivation for flood simulations: a comparison of orthophotos, LiDAR and crowdsourced geodata. Remote Sensing, 6 (2), 1739–1759.
  • Du, S., et al., 2020. Large-scale urban functional zone mapping by integrating remote sensing images and open social data. Giscience & Remote Sensing, 57 (3), 411–430.
  • Du, Z., Sui, H., and Wang, J., 2021. A novel semantic recognition framework of urban functional zones supporting urban land structure analytics based on open-source data. Transactions in GIS, 25 (3), 1460–1484.
  • Elagouz, M.H., et al., 2020. Detection of land use/cover change in Egyptian Nile Delta using remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 23 (1), 57–62.
  • Elwood, S., 2008. Volunteered geographic information: key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72 (3-4), 133–135.
  • Fan, J., and Thakur, G., 2023. Towards POI-based large-scale land use modeling: spatial scale, semantic granularity, and geographic context. International Journal of Digital Earth, 16 (1), 430–445.
  • Fang, H., et al., 2023. Scene-level change detection by integrating VHR images and POI data using a multiple-branch fusion network. Remote Sensing Letters, 14 (8), 808–820.
  • Fischer, F., et al., 2012. VGI as big data: a new but delicate geographic data source. GeoInformatics, 3, 46–47.
  • Fonte, C.C., et al., 2015. Usability of VGI for validation of land cover maps. International Journal of Geographical Information Science, 29 (7), 1269–1291.
  • Fonte, C.C., et al., 2017. Generating up-to-date and detailed land use and land cover maps using OpenStreetMap and GlobeLand30. ISPRS International Journal of Geo-Information, 6 (4), 125.
  • Foody, G., et al., 2015. Accurate attribute mapping from volunteered geographic information: issues of volunteer quantity and quality. The Cartographic Journal, 52 (4), 336–344.
  • Foody, G.M., and Boyd, D.S., 2013. Using volunteered data in land cover map validation: mapping west african forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 (3), 1305–1312.
  • Forget, Y., et al., 2021. Mapping 20 years of urban expansion in 45 urban areas of Sub-Saharan Africa. Remote Sensing, 13 (3), 525.
  • Frias-Martinez, V., et al., 2014. Consensus clustering for urban land use analysis using cell phone network data. International Journal of Ad Hoc and Ubiquitous Computing, 17 (1), 39–58.
  • Fritz, S., et al., 2012. Geo-Wiki: an online platform for improving global land cover. Environmental Modelling & Software, 31, 110–123.
  • Fritz, S., et al., 2017. A global dataset of crowdsourced land cover and land use reference data. Scientific Data, 4 (1), 170075.
  • Fyleris, T., et al., 2022. Urban change detection from aerial images using convolutional neural networks and transfer learning. ISPRS International Journal of Geo-Information, 11 (4), 246.
  • Gao, S., 2020. A review of recent researches and reflections on geospatial artificial intelligence. Geomatics and Information Science of Wuhan University, 45 (12), 1865– 1874.
  • Gong, P., et al., 2020. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018. Science Bulletin, 65 (3), 182–187.
  • Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 69 (4), 211–221.
  • Goodchild, M.F., and Li, L.N., 2012. Assuring the quality of volunteered geographic information. Spatial Statistics, 1, 110–120.
  • Grippa, T., et al., 2018. Mapping urban land use at street block level using OpenStreetMap, remote sensing data, and spatial metrics. ISPRS International Journal of Geo-Information, 7 (7), 246.
  • Guo, Z., Du, S., and Habib, A., 2016. An extended random walker approach for object extraction by integrating VGI data and VHR image. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (5), 1854–1863.
  • Häberle, M., Hoffmann, E.J., and Zhu, X.X., 2022. Can linguistic features extracted from geo-referenced tweets help building function classification in remote sensing? Isprs Journal of Photogrammetry and Remote Sensing, 188, 255–268.
  • Hagenauer, J., and Helbich, M., 2012. Mining urban land-use patterns from volunteered geographic information by means of genetic algorithms and artificial neural networks. International Journal of Geographical Information Science, 26 (6), 963–982.
  • Hoffmann, E.J., Abdulahhad, K., and Zhu, X.X., 2023. Using social media images for building function classification. Cities, 133, 104107.
  • Howe, J., 2006. The rise of crowdsourcing. Wired Mag, 14 (6), 1–4.
  • Hu, T., et al., 2016. Mapping urban land use by using landsat images and open social data. Remote Sensing, 8 (2), 151.
  • Huang, W., et al., 2022b. Estimating urban functional distributions with semantics preserved POI embedding. International Journal of Geographical Information Science, 36 (10), 1905–1930.
  • Huang, X., et al., 2022c. Mapping 10 m global impervious surface area (GISA-10m) using multi-source geospatial data. Earth System Science Data, 14 (8), 3649–3672.
  • Huang, X., et al., 2023. Land cover mapping via crowdsourced multi-directional views: the more directional views, the better. International Journal of Applied Earth Observation and Geoinformation, 122, 103382.
  • Huang, Z., et al., 2020. An ensemble learning approach for urban land use mapping based on remote sensing imagery and social sensing data. Remote Sensing, 12 (19), 3254.
  • Huang, L., Xiang, S., and Zheng, J., 2022a. Fine-scale monitoring of industrial land and its intra-structure using remote sensing images and POIs in the Hangzhou Bay Urban Agglomeration, China. International Journal of Environmental Research and Public Health, 20 (1), 226.
  • Hughes, L.H., et al., 2019. A cluster graph approach to land cover classification boosting. Data, 4 (1), 10.
  • Iranmanesh, A., Cömert, N.Z., and Hoşkara, ŞÖ., 2022. Reading urban land use through spatio-temporal and content analysis of geotagged Twitter data. GeoJournal, 87 (4), 2593–2610.
  • ISO 2002. ISO 19113: 2002. Geographic information—quality principles. Geneva: ISO.
  • Jarvis, R.M., et al., 2016. Identifying diverse conservation values for place-based spatial planning using crowdsourced voluntary geographic information. Society & Natural Resources, 29 (5), 603–616.
  • Jiang, S., et al., 2015. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Computers Environment and Urban Systems, 53, 36–46.
  • Jiao, H., Huang, S., and Zhou, Y., 2023. Understanding the land use function of station areas based on spatiotemporal similarity in rail transit ridership: a case study in Shanghai, China. Journal of Transport Geography, 109, 103568.
  • Ju, Y., Dronova, I., and Delclòs-Alió, X., 2022. A 10 m resolution urban green space map for major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap. Scientific Data, 9 (1), 586.
  • Kang, J., et al., 2018. Building instance classification using street view images. Isprs Journal of Photogrammetry and Remote Sensing, 145, 44–59.
  • Keßler, C., and De Groot, R. T. A., 2013. Trust as a proxy measure for the quality of volunteered geographic information in the case of OpenStreetMap. In: Vandenbroucke, D., Bucher, B. and Crompvoets, J. eds. Geographic Information Science at the Heart of Europe. Cham: Springer International Publishing, 21–37.
  • Kunze, C., and Hecht, R., 2015. Semantic enrichment of building data with volunteered geographic information to improve mappings of dwelling units and population. Computers Environment and Urban Systems, 53, 4–18.
  • Laso Bayas, J.C., et al., 2020. Crowdsourcing LUCAS: citizens generating reference land cover and land use data with a mobile app. Land, 9 (11), 446.
  • Lee, J.Y., et al., 2022. Mapping sugarcane in central India with smartphone crowdsourcing. Remote Sensing, 14 (3), 703.
  • Lee, S., and Son, Y., 2023. Mapping of user-perceived landscape types and spatial distribution using crowdsourced photo data and machine learning: focusing on Taeanhaean National Park. Journal of Outdoor Recreation and Tourism, 44, 100616.
  • Leinenkugel, P., et al., 2019. The potential of open geodata for automated large-scale land use and land cover classification. Remote Sensing, 11 (19), 2249.
  • Lesiv, M., et al., 2016. Comparison of data fusion methods using crowdsourced data in creating a hybrid forest cover map. Remote Sensing, 8 (3), 261.
  • Li, H., et al., 2020. RSI-CB: a large-scale remote sensing image classification benchmark using crowdsourced data. Sensors, 20 (6), 1594.
  • Li, H., et al., 2021a. Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning. International Journal of Applied Earth Observation and Geoinformation, 104, 102571.
  • Li, W., 2021. Mapping urban land use by combining multi-source social sensing data and remote sensing images. Earth Science Informatics, 14 (3), 1537–1545.
  • Li, X., et al., 2021b. Mapping essential urban land use categories in Beijing with a fast area of interest (AOI)-Based method. Remote Sensing, 13 (3), 477.
  • Lin, A., et al., 2021. Identifying urban building function by integrating remote sensing imagery and POI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 8864–8875.
  • Lin, A., et al., 2024a. An MIU-based deep embedded clustering model for urban functional zoning from remote sensing images and VGI data. International Journal of Applied Earth Observation and Geoinformation, 128, 103689.
  • Lin, A., et al., 2024b. How does urban heat island differ across urban functional zones? Insights from 2D/3D urban morphology using geospatial big data. Urban Climate, 53, 101787.
  • Liu, D., et al., 2020a. Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: a case study in the middle Yangtze River basin. Isprs Journal of Photogrammetry and Remote Sensing, 159, 337–351.
  • Liu, H., et al., 2020b. Recognizing urban functional zones by a hierarchical fusion method considering landscape features and human activities. Transactions in GIS, 24 (5), 1359–1381.
  • Liu, L., et al., 2021. A data fusion-based framework to integrate multi-source VGI in an authoritative land use database. International Journal of Digital Earth, 14 (4), 480–509.
  • Liu, R., et al., 2022. Feature recognition of urban industrial land renewal based on POI and RS data: the case of Beijing. Frontiers in Environmental Science, 10, 890571.
  • Liu, X., et al., 2016. Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 30 (2), 334–350.
  • Liu, X., et al., 2017. Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science, 31 (8), 1675–1696.
  • Liu, X.P., et al., 2018. Characterizing mixed-use buildings based on multi-source big data. International Journal of Geographical Information Science, 32 (4), 738–756.
  • Liu, Z., 2021. Identifying urban land use social functional units: a case study using OSM data. International Journal of Digital Earth, 14 (12), 1798–1817.
  • Liu, X., and Long, Y., 2016. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environment and Planning B: Planning and Design, 43 (2), 341–360.
  • Lu, W., et al., 2022. A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data. Remote Sensing of Environment, 270, 112830.
  • Luo, N., et al., 2019. Fusing high-spatial-resolution remotely sensed imagery and OpenStreetMap data for land cover classification over urban areas. Remote Sensing, 11 (1), 88.
  • Malinverni, E.S., et al., 2011. Hybrid object-based approach for land use/land cover mapping using high spatial resolution imagery. International Journal of Geographical Information Science, 25 (6), 1025–1043.
  • Manley, K., and Egoh, B.N., 2022. Mapping and modeling the impact of climate change on recreational ecosystem services using machine learning and big data. Environmental Research Letters, 17 (5), 054025.
  • Mao, H., et al., 2017. Improving land use inference by factorizing mobile phone call activity matrix. Journal of Land Use Science, 12 (2-3), 138–153.
  • Martínez, S., and Mollicone, D., 2012. From land cover to land use: a methodology to assess land use from remote sensing data. Remote Sensing, 4 (4), 1024–1045.
  • Meng, Y., Hou, D., and Xing, H., 2017. Rapid detection of land cover changes using crowdsourced geographic information: a case study of Beijing, China. Sustainability, 9 (9), 1547.
  • Neis, P., Zielstra, D., and Zipf, A., 2013. Comparison of volunteered geographic information data contributions and community development for selected world regions. Future Internet, 5 (2), 282–300.
  • Nie, W., et al., 2022. Building function type identification using mobile signaling data based on a machine learning method. Remote Sensing, 14 (19), 4697.
  • Niu, H.F., and Silva, E.A., 2020. Crowdsourced data mining for urban activity: review of data sources, applications, and methods. Journal of Urban Planning and Development, 146 (2), 04020007.
  • O’driscoll, C., et al., 2023. Measuring land-use mixing across the republic of Ireland: source data comparisons. Journal of Maps, 19 (1), 2214165.
  • Olteanu-Raimond, A.M., et al., 2020. Use of automated change detection and VGI Sources for identifying and validating urban land use change. Remote Sensing, 12 (7), 1186.
  • Parekh, J.R., et al., 2021. Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sensing, 13 (16), 3166.
  • Pei, T., et al., 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28 (9), 1988–2007.
  • Psyllidis, A., et al., 2022. Points of interest (POI): a commentary on the state of the art, challenges, and prospects for the future. Computational Urban Science, 2 (1), 20.
  • Qian, T., et al., 2020a. Analyzing the uncertainty of degree confluence project for validating global land-cover maps using reference data-based classification schemes. Remote Sensing, 12 (16), 2589.
  • Qian, Z., et al., 2020b. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories. Remote Sensing, 12 (15), 2449.
  • Ran, Y.H., et al., 2012. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory. International Journal of Geographical Information Science, 26 (1), 169–191.
  • Ratti, C., et al., 2006. Mobile landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 33 (5), 727–748.
  • Saralioglu, E., and Gungor, O., 2022. Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network. Geocarto International, 37 (2), 657–677.
  • Schepaschenko, D., et al., 2015a. Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sensing of Environment, 162, 208–220.
  • Schepaschenko, D., et al., 2015b. Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products. Contemporary Problems of Ecology, 8 (7), 811–817.
  • Schmidt, S., and Barron, C., 2020. Mapping impervious surfaces precisely-a GIS-based methodology combining vector data and high-resolution airborne imagery. Journal of Geovisualization and Spatial Analysis, 4 (1), 14.
  • See, L., et al., 2015. Building a hybrid land cover map with crowdsourcing and geographically weighted regression. Isprs Journal of Photogrammetry and Remote Sensing, 103, 48–56.
  • See, L., et al., 2016. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5 (5), 55.
  • Senaratne, H., et al., 2017. A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31 (1), 139–167.
  • Sheeja, R.V., et al., 2011. Land use and land cover changes over a century (1914-2007) in the Neyyar River Basin, Kerala: a remote sensing and GIS approach. International Journal of Digital Earth, 4 (3), 258–270.
  • Shi, Y., et al., 2019. Urban land use and land cover classification using multisource remote sensing images and social media data. Remote Sensing, 11 (22), 2719.
  • Singhal, K., et al., 2023. Large language models encode clinical knowledge. Nature, 620 (7972), 172–180.
  • Soliman, A., et al., 2017. Social sensing of urban land use based on analysis of Twitter users’ mobility patterns. PLoS One, 12 (7), e0181657.
  • Song, Z., et al., 2022. Building-level urban functional area identification based on multi-attribute aggregated data from cell phones-a method combining multidimensional time series with a SOM neural network. ISPRS International Journal of Geo-Information, 11 (2), 72.
  • Spatharioti, S.E., et al., 2022. An effective online platform for crowd classification of coastal wetland loss. Conservation Science and Practice, 5 (1), e12844.
  • Stefanidis, A., Crooks, A., and Radzikowski, J., 2013. Harvesting ambient geospatial information from social media feeds. GeoJournal, 78 (2), 319–338.
  • Su, W., Sui, D., and Zhang, X.D., 2020. Satellite image analysis using crowdsourcing data for collaborative mapping: current and opportunities. International Journal of Digital Earth, 13 (6), 645–660.
  • Sun, J., et al., 2020. Mapping essential urban land use categories in Nanjing by integrating multi-source big data. Remote Sensing, 12 (15), 2386.
  • Sun, Z., et al., 2022. Deep convolutional autoencoder for urban land use classification using mobile device data. International Journal of Geographical Information Science, 36 (11), 2138–2168.
  • Sun, Z., et al., 2023. Recognizing urban functional zones by GF-7 satellite stereo imagery and POI data. Applied Sciences, 13 (10), 6300.
  • Tenerelli, P., Demšar, U., and Luque, S., 2016. Crowdsourcing indicators for cultural ecosystem services: a geographically weighted approach for mountain landscapes. Ecological Indicators, 64, 237–248.
  • Tian, D.Z., et al., 2023. The role of large language models in medical image processing: a narrative review. Quantitative Imaging in Medicine and Surgery, 14 (1), 1108–1121.
  • Truong, Q.T., De Runz, C., and Touya, G., 2019. Analysis of collaboration networks in OpenStreetMap through weighted social multigraph mining. International Journal of Geographical Information Science, 33 (8), 1651–1682.
  • Tu, W., et al., 2017. Coupling mobile phone and social media data: a new approach to understanding urban functions and diurnal patterns. International Journal of Geographical Information Science, 31 (12), 2331–2358.
  • Vaz, E., and Arsanjani, J.J., 2015. Crowdsourced mapping of land use in urban dense environments: an assessment of Toronto. Canadian Geographies / Géographies Canadiennes, 59 (2), 246–255.
  • Veres, C., 2022. Large language models are not models of natural language: they are corpus models. IEEE Access., 10, 61970–61979.
  • Wang, S., et al., 2020. Mapping crop types in southeast India with smartphone crowdsourcing and deep learning. Remote Sensing, 12 (18), 2957.
  • Wang, Y., et al., 2016. Mapping dynamic urban land use patterns with crowdsourced geo-tagged social media (sina-weibo) and commercial points of interest collections in Beijing, China. Sustainability, 8 (11), 1202.
  • Wang, Y.J., et al., 2014. Using a remote sensing driven model to analyze effect of land use on soil moisture in the Weihe River Basin, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (9), 3892–3902.
  • Wang, S., and Li, W., 2021. GeoAI in terrain analysis: enabling multi-source deep learning and data fusion for natural feature detection. Computers, Environment and Urban Systems, 90, 101715.
  • Wu, H., et al., 2021. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. International Journal of Applied Earth Observation and Geoinformation, 103, 102475.
  • Wu, H., et al., 2023. SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images. Computers Environment and Urban Systems, 100, 101921.
  • Xia, N., Cheng, L., and Li, M., 2019. Mapping urban areas using a combination of remote sensing and geolocation data. Remote Sensing, 11 (12), 1470.
  • Xie, L., et al., 2022. Identification of urban functional areas based on the multimodal deep learning fusion of high-resolution remote sensing images and social perception data. Buildings, 12 (5), 556.
  • Xing, H., et al., 2017a. Exploring point-of-interest data from social media for artificial surface validation with decision trees. International Journal of Remote Sensing, 38 (23), 6945–6969.
  • Xing, H., et al., 2017b. Employing crowdsourced geographic information to classify land cover with spatial clustering and topic model. Remote Sensing, 9 (6), 602.
  • Xu, S., et al., 2020. A new remote sensing images and point-of-interest fused (RPF) model for sensing urban functional regions. Remote Sensing, 12 (6), 1032.
  • Xu, X., et al., 2022. Fine-resolution mapping of the circumpolar arctic man-made impervious areas (CAMI) using sentinels, OpenStreetMap and ArcticDEM. Big Earth Data., 6 (2), 196–218.
  • Yan, J., et al., 2023. Identification of secondary functional areas and functional structure analysis based on multisource geographic data. Geocarto International, 38 (1), 2191995.
  • Yan, Y., et al., 2020. Volunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience. International Journal of Geographical Information Science, 34 (9), 1765–1791.
  • Yang, M., et al., 2022. Classifying urban functional regions by integrating buildings and points-of-interest using a stacking ensemble method. International Journal of Applied Earth Observation and Geoinformation, 108, 102753.
  • Yang, X., Bo, S., and Zhang, Z., 2023a. Classifying urban functional zones based on modeling POIs by deepwalk. Sustainability, 15 (10), 7995.
  • Yang, X., Yang, Y., and Zheng, X., 2023b. Classifying urban functional zones by integrating POIs, Place2vec, and LDA. Journal of Urban Planning and Development, 149 (4), 04023034.
  • Yan, Y., Schultz, M., and Zipf, A., 2019. An exploratory analysis of usability of flickr tags for land use/land cover attribution. Geo-Spatial Information Science, 22 (1), 12–22.
  • Ye, Y., et al., 2020. Land use classification from social media data and satellite imagery. The Journal of Supercomputing, 76 (2), 777–792.
  • Yin, J.D., et al., 2021. Integrating remote sensing and geospatial big data for urban land use mapping: a review. International Journal of Applied Earth Observation and Geoinformation, 103, 102514.
  • Yu, Y., et al., 2018. Urban impervious surface estimation from remote sensing and social data. Photogrammetric Engineering & Remote Sensing, 84 (12), 771–780.
  • Yu, Z., Xiao, Z., and Liu, X., 2022. A data-driven perspective for sensing urban functional images: place-based evidence in Hong Kong. Habitat International, 130, 102707.
  • Zhang, H., et al., 2021. Using social media to measure and map visitation to public lands in Utah. Applied Geography, 128, 102389.
  • Zhang, X., et al., 2020. A New approach to refining land use types: predicting point-of-interest categories using weibo check-in data. ISPRS International Journal of Geo-Information, 9 (2), 124.
  • Zhang, X.C., et al., 2023a. Inferring building function: a novel geo-aware neural network supporting building-level function classification. Sustainable Cities and Society, 89, 104349.
  • Zhang, Y., et al., 2017. The combined use of remote sensing and social sensing data in fine-grained urban land use mapping: a case study in Beijing, China. Remote Sensing. Remote Sensing, 9 (9), 865.
  • Zhang, Y., Liu, P., and Biljecki, F., 2023b. Knowledge and topology: a two layer spatially dependent graph neural networks to identify urban functions with time-series street view image. ISPRS Journal of Photogrammetry and Remote Sensing, 198, 153–168.
  • Zhao, Y., et al., 2023. Multi-type features embedded deep learning framework for residential building prediction. ISPRS International Journal of Geo-Information, 12 (9), 356.
  • Zhong, Y., et al., 2023. Global urban high-resolution land-use mapping: from benchmarks to multi-megacity applications. Remote Sensing of Environment, 298, 113758.
  • Zhou, Q., and Jing, X., 2022. Evaluation and comparison of open and high-resolution LULC datasets for urban blue space mapping. Remote Sensing, 14 (22), 5764.
  • Zhou, Q., Wang, S.Z., and Liu, Y. M., 2022. Exploring the accuracy and completeness patterns of global land-cover/land-use data in OpenStreetMap. Applied Geography, 145, 102742.
  • Zhu, J., et al., 2024. A flood knowledge-constrained large language model interactable with GIS: enhancing public risk perception of floods. International Journal of Geographical Information Science, 38 (4), 603–625.
  • Zhu, L., et al., 2021. Using eco-geographical zoning data and crowdsourcing to improve the detection of spurious land cover changes. Remote Sensing, 13 (16), 3244.
  • Zhuo, L., et al., 2019. Identifying building functions from the spatiotemporal population density and the interactions of people among buildings. ISPRS International Journal of Geo-Information, 8 (6), 247.
  • Zielstra, D., and Hochmair, H.H., 2013. Positional accuracy analysis of Flickr and Panoramio images for selected world regions. Journal of Spatial Science, 58 (2), 251–273.
  • Zong, L., et al., 2020. Detailed mapping of urban land use based on multi-source data: a case study of lanzhou. Remote Sensing, 12 (12), 1987.