60
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Biomedical image query in Gaussian-modelled feature space employing GeoSOM with enhanced inverted indexing

Pages 179-195 | Received 05 Mar 2014, Accepted 25 Feb 2016, Published online: 20 Apr 2016

References

  • Shyu, C. R., Brodley, C. E., Kak, A. C., Kosaka, A., Aisen, A. M. and Broderick, L. S. ASSERT: a physician-in-the-loop content-based image retrieval system for HRCT image databases. Comput. Image Under., 1999, 75, (1–2), 111–132. doi: 10.1006/cviu.1999.0768
  • Lehmann, T. M., Wein, B. B., Dahmen, J., Bredno, J., Vogelsang, F. and Kohnen, M. Content-based image retrieval in medical applications—a novel multi-step approach. Proc. Storage Retr. Media Datab. SPIE, 2000, 3972, 312–320. doi: 10.1117/12.373563
  • Antani, S., Long, L. R. and Thoma, G. R. A biomedical information system for combined content-based retrieval of spine X-ray images and associated text information. Proc. 3rd Indian Conf. on Computer Vision, Graphics, and Image Proc., Ahmedabad, India, 16–18 Dec 2002, pp. 242–247.
  • Muller, H., Rosset, A. and Vallee, J. P. Geissbuhler a integrating content-based visual access methods into a medical case database. Stud. Health Technol. Inform., 2003, 95, 480–485.
  • Muller, H., Michoux, N., Bandon, D. and Geissbuhler, A. A review of content-based image retrieval systems in medical applications clinical benefits and future directions. Int. J. Med. Inform., 2004, 73, (1), 1–23. doi: 10.1016/j.ijmedinf.2003.11.024
  • Tourassi, G. D., Harrawood, B., Singh, S., Lo, J. Y. and Floyd, C. E. Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammograms. Med. Phys., 2007, 34, (1), 140–50. doi: 10.1118/1.2401667
  • Lim, J. H. and Chevallet, J. P. VisMed: a visual vocabulary approach for medical image indexing and retrieval. Proc. Second Asia Inf. Retr. Symp., 2005, 3689, 84–96.
  • Hsu, W., Antani, S., Long, L. R., Neve, L. and Thoma, G. R. SPIRS: a web-based image retrieval system for large biomedical databases. Int. J. Med. Inform., 2009, 78, Suppl. S13–S24. doi: 10.1016/j.ijmedinf.2008.09.006
  • Liua, Y., Zhang, D., Lu, G. and Ma, W. Y. A survey of content-based image retrieval with high-level semantics. Pattern Recognit., 2007, 40, 262–282. doi: 10.1016/j.patcog.2006.04.045
  • Lehmann, T. M., Güld, M. O., Thies, C., Fischer, B., Spitzer, K., Keysers, D., Ney, H., Kohnen, M., Schubert, H. and Wein, B. B. Content-based image retrieval in medical applications. Methods Inf. Med., 2004, 43, (4), 354–361.
  • Vogel, J. and Schiele, B. Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput., 2007, 72, (2), 133–157.
  • Rahman, M. M., Antani, S. K. and Thoma, G. R. Local concept-based medical image retrieval with correlation-enhanced similarity matching based on global analysis. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, 13–18 June 2010, pp. 87–94.
  • Junck, L., Moen, J. G., Hutchins, G. D., Brown, M. B. and Kuhl, D. E. Correlation methods for the centering, rotation and alignment of functional brain images. J. Nucl. Med., 1990, 31, (7), 1220–1226.
  • Wang, X. J., Ma, W. Y. and Li, X. Exploring statistical correlations for image retrieval. Multimed. Syst., 2008, 11, (4), 340–351. doi: 10.1007/s00530-006-0013-5
  • Sudhakar, M. S. and Bhoopathy Bagan, K. A Novel approach for retrieval of medical images in bit plane domain. Proc. IEEE Int. Conf. on Signal and Image Processing Applications (ICSIPA), Kuala Lumpur, 16–18 November 2011, pp. 478–483.
  • Muller, H., Deselaers, T., Lehmann, T. M., Clough, P., Kim, E. and Hersh, W. Overview of the ImageCLEFmed 2006 medical retrieval and annotation Tasks. CLEF Proc. LNCS, 2007, 4730, 595–608.
  • Konstantinidis, K., Gasteratos, A. and Andreadis, I. Image retrieval based on fuzzy color histogram processing. Opt. Commun., 2005, 248, (4–6), 375–386. doi: 10.1016/j.optcom.2004.12.029
  • Schwarz, M. W., Cowan, W. B. and Beatty, J. C. An experimental comparison of RGB, YIQ, LAB, HSV, and opponent color models. ACM Trans. Graph., 1987, 6, (2), 123–158. doi: 10.1145/31336.31338
  • Stasinopoulos, M. D. and Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw., 2007, 23, (7), 1–46. doi: 10.18637/jss.v023.i07
  • Nadarajah, S. A generalized normal distribution. J. Appl. Stat., 2005, 32, (7), 685–694. doi: 10.1080/02664760500079464
  • Pourghassem, H. and Ghassemian, H. Content-based medical image classification using a new hierarchical merging scheme. Comput. Med. Imaging Grap., 2008, 32, (8), 651–661. doi: 10.1016/j.compmedimag.2008.07.006
  • Haralick, R. M., Shanmugam, K. and Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern., 1973, 3, (6), 610–621. doi: 10.1109/TSMC.1973.4309314
  • Oh, K. S., Yaokai, F., Kaneko, K. and Makinouchi, A. SOM-based R*-tree for similarity retrieval. Proc. 7th Int. Conf. on Database Systems for Advanced Applications, Hong Kong, China, 21–21 April 2001, pp. 182–189.
  • You, J. H., Bae, S. H., Lee, D. Y., Lee, C. J. and Song, B.-H. Feature-based similarity retrieval based on SOM-based R*-tree, report.
  • Rahman, M. M., Antani, S. K. and Thoma, G. R. Bag of keypoints-based biomedical image search with affine covariant region detection and correlation-enhanced similarity Matching. IEEE 23rd Int. Symp. on Computer-Based Medical Systems (CBMS), Perth, WA, 12–15 October 2010, pp. 261–266.
  • Jurie, F. and Trigger, B. Creating efficient codebooks for visual recognition. Tenth IEEE Int. Conf. Comput., 2005, 1, 604–610.
  • Rahman, M. M. Image search in a visual concept feature space with SOM-based clustering and modified inverted indexing. Self Organ. Maps Appl. Novel Algorith. Des., 2011, 173–188.
  • Yingxin, W. and Takatsuka, M. Spherical self-organizing map using efficient indexed geodesic data structure. Neural Netw., 2006, 19, (6–7), 900–910. doi: 10.1016/j.neunet.2006.05.021
  • Bacao, F., Lobo, V. and Painho, M. Geo-SOM and its integration with geographic information systems. Proc. of 5th Workshop on Self Organ. Maps, 2005.
  • Wu, Y. and Takatsuka, M. The Geodesic self-organizing map and its error analysis. Proc. 28th Aust. Conf. Comput. Sci., 2005, 38, 343–351.
  • Bacao, F., Lobo, V. and Painho, M. The self-organizing map, the Geo-SOM, and relevant variants for geosciences. Comput. Geosci., 2005, 31, (2), 155–163. doi: 10.1016/j.cageo.2004.06.013
  • Bacao, F., Lobo, V. and Painho, M. Geo-self-organizing map (Geo-SOM) for building and exploring homogeneous regions. Lecture Notes in Computer Science, 22–37, 2004, Springer, Berlin.
  • Henriques, R., Bacao, F. and Lobo, V. Spatial clustering with SOM and GeoSOM – case study of Lisbon’s metropolitan area. Proc. 2nd Int. Conf. on Advanced Geographic Information Systems, Applications, and Services (GEOPROCESSING), St. Maarten, 10–16 February 2010, pp. 148–152.
  • Yates, R. B. and Neto, B. R. Modern information retrieval; 1999 (Addison Wesley, Longman). ISBN: 020139829.
  • Amato, G., Magionami, V. and Savino, P. Region based indexing and retrieval inspired by text search. Proc. 14th Int. Conf. on Image Analysis and Processing Workshops, ICIAPW, Modena, 10–13 September 2007, pp. 101–106.
  • Feng, D., Yang, J. and Yang, C. Efficient indexing for mobile image retrieval. Proc. IEEE 11th Int. Conf. on Data Mining Workshops (ICDMW), Vancouver, BC, 11–11 December 2011, pp. 793–798.
  • NBIA: National Biomedical Imaging Archive, http://ncia.nci.nih.gov/ncia/download.
  • GeoSOM Suite Tool, http://www.isegi.unl.pt/labnt/geosom/GeoSOM.suite.htm.
  • Rahman, M. M., Antani, S. K. and Thoma, G. R. A query expansion framework in image retrieval domain based on local and global analysis. Inf. Process. Manag., 2011, 47, 676–691. doi: 10.1016/j.ipm.2010.12.001
  • Rahman, M. M., Bhattacharya, P. and Desai, B. C. A unified image retrieval framework on local visual and semantic concept-based feature spaces. J. Vis.Commun. Image Represent., 2009, 20, (7), 450–462. doi: 10.1016/j.jvcir.2009.06.001
  • Sudhakar, M. S. and Bhoopathy Bagan, K. An effective biomedical image retrieval framework in a fuzzy feature space employing phase congruency and GeoSOM. Appl. Soft Comput., 2014, 22, 492–503. doi: 10.1016/j.asoc.2014.04.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.