297
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A total variation and group sparsity-based algorithm for nuclear radiation-contaminated video restoration

, ORCID Icon, &
Pages 15-27 | Received 19 Nov 2019, Accepted 09 Feb 2021, Published online: 05 Mar 2021

References

  • Kryshev II, Ryazantsev EP. Risk assessment for radioactive contamination of the environment during operation of a nuclear power plant. At Energy. 1998;85(2):583–588. doi:10.1007/BF02359938.
  • Sugimoto A, Gilmour S, Tsubokura M, et al. Assessment of the risk of medium-term internal contamination in Minamisoma City, Fukushima, Japan, after the Fukushima Dai-ichi nuclear accident. Environ Health Perspect. 2014;122(6):587–593. doi:10.1289/ehp.1306848.
  • Miller A, Machrafi R, Mohany A. Development of a semi-autonomous directional and spectroscopic radiation detection mobile platform. Radiat Meas. 2014;72:53–59. doi:10.1016/j.radmeas.2014.11.009.
  • Tsitsimpelis I, Taylor C J, Lennox B, et al. A review of ground-based robotic systems for the characterization of nuclear environments. Prog Nucl Energy. 2019;111:109–124. doi:10.1016/j.pnucene.2018.10.023.
  • Wen L, Li YD, Guo Q, et al. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Phys Sin. 2015;64(2):257–263. doi:10.7498/aps.64.024220.
  • Wang Z, Huang S, Liu M, et al. Displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor. AIP Adv. 2014;4(7):077108. doi:10.1063/1.4889878.
  • Strong D, Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 2003;19(6):S165–S187. doi:10.1088/0266-5611/19/6/059.
  • Chan TF, Shen J. Variational image inpainting. Commun Pure Appl Math. 2010;58(5):579–619. doi:10.1002/cpa.20075.
  • Zhang X, Burger M, Bresson X, et al. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J Imaging Sci. 2010;3(3):253–276. doi:10.1137/090746379.
  • Lu L, Jin W, Wang X. Non-local means image denoising with a soft threshold. IEEE Signal Process Lett. 2015;22(7):833–837. doi:10.1109/LSP.2014.2371332.
  • Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration. IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27-October 4, 2009. IEEE, 2009. doi: 10.1109/ICCV.2009.5459452.
  • Dong W, Shi G, Li X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process. 2013;22(2):700–711. doi:10.1109/TIP.2012.2221729.
  • Lu Z, Ling Q, Li H, et al. Video restoration based on a novel second order nonlocal total variation model. Signal Processing. 2017,133(4): 79-96. doi:10.1016/j.sigpro.2016.10.009.
  • Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring. IEEE Trans Image Process. 2012;21(4):1715–1728. doi:10.1109/TIP.2011.2176954.
  • Glasner D, Bagon S, Irani M. Super-resolution from a single image. 2009 IEEE 12th International Conference on Computer Vision (ICCV). IEEE Computer Society, 2009, September, pp. 349–356. doi: 10.1109/iccv.2009.5459271.
  • Luo E, Chan S H, Nguyen T Q. Adaptive image denoising by targeted databases. IEEE Trans Image Process. 2015;24(7):2167–2181. doi:10.1109/TIP.2015.2414873.
  • Yue H, Sun X, Yang J, et al. Image denoising by exploring external and internal correlations. IEEE Trans Image Process. 2015;24(6):1967–1982. doi:10.1109/TIP.2015.2412373.
  • Bogaerts J, Dierickx B, Mertens R. Random telegraph signals in a radiation-hardened CMOS active pixel sensor. IEEE Trans Nucl Sci. 2002;49(1):249–257. doi:10.1109/TNS.2002.998649.
  • Congzheng W, Song H, Chunming G, et al. Nuclear radiation degradation study on HD camera based on CMOS image sensor at different dose rates. Sensors. 2018;18(2):514–523. doi:10.3390/s18020514.
  • Yang B, Zhao LH, Deng Q. A novel anti-nuclear radiation image restoration algorithm based on inpainting technology. J Univ South China (Sci Technol). 2016;30(4):56–61. doi:10.19431/j.cnki.1673-0062.2016.04.011.
  • Hindasyah A, Sudiana D, Gunawan D. A novel technique for removal of high density white spot noise from digital neutron radiographic images. Atom Indones. 2018;44(3):165–171. doi:10.17146/aij.2018.846.
  • Burger M, He L, Nlieb C B. Cahn-Hilliard inpainting and a generalization for gray value images. SIAM J Imaging Sci. 2009;2(4):1129–1167. doi:10.1137/080728548.
  • Yan M. Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind inpainting. SIAM J Imaging Sci. 2013;6(3):1227–1245. doi:10.1137/12087178X.
  • Gilboa G. A spectral approach to total variation. Lect Notes Comput Sci. 2013;7893:36–47. doi:10.1007/978-3-642-38267-3.
  • Horesh D, Gilboa G. Separation surfaces in the spectral TV domain for texture decomposition. IEEE Trans Image Process. 2015;25(9):4260–4270. doi:10.1109/TIP.2016.2587121.
  • Dai L, Sun X, Wu F, et al. Large scale image retrieval with visual groups. IEEE International Conference on Image Processing. IEEE, 2014. 2582-2586. doi: 10.1109/ICIP.2013.6738532.
  • Vogel C R, Fast OME. Robust total variation-based reconstruction of noisy, blurred images. IEEE Trans Image Process. 1998;7(6):813–824. doi:10.1109/83.679423.
  • Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process. 2009;18(11):2419–2434. doi:10.1109/TIP.2009.2028250.
  • Burger M, Gilboa G, Moeller M, et al. Spectral decompositions using one-homogeneous functionals. SIAM J Imaging Sci. 2016;9(3):1374–1408. doi:10.1137/15M1054687.
  • Hait E, Gilboa G. Spectral total-variation local scale signatures for image manipulation and fusion. IEEE Trans Image Process. 2019;28(2):880–895. doi:10.1109/TIP.2018.2872630.
  • Qiao L, Chen S, Tan X. Sparsity preserving projections with applications to face recognition. Pattern Recognit. 2010;43(1):331–341. doi:10.1016/j.patcog.2009.05.005.
  • Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Rank-sparsity incoherence for matrix decomposition. SIAM J Optim. 2011;21(2):572–596. doi:10.1137/090761793.
  • Mairal J, Bach F, Ponce J, et al. Non-local sparse models for image restoration. IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, September 27 - October 4, 2009. IEEE, 2009. doi:10.1109/ICCV.2009.5459452.
  • Han Y, Wu F, Tian Q, et al. Image annotation by input–output structural grouping sparsity. IEEE Trans Image Process. 2012;21(6):3066–3079. doi:10.1109/TIP.2012.2183880.
  • Du D, Zhang L, Lu H, et al. Discriminative hash tracking with group sparsity. IEEE Trans Cybern. 2015;46(8):1914–1925. doi:10.1109/TCYB.2015.2457618.
  • Xiao S. Image inpainting method based on total variation regularization. Recent Advances in Electrical & Electronic Engineering. 2017;10(3):242–247. doi:10.2174/2352096510666170601090909.
  • Cruz J, Bogdanova I, Paquier B, et al. Scale invariant feature transform on the sphere: theory and applications. Int J Comput Vis. 2012;98(2):217–241. doi:10.1007/s11263-011-0505-4.
  • Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial matching. 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2007. doi: 10.1109/CVPR.2007.383172.
  • Wu Z, Ke Q, Isard M, et al. Bundling features for large scale partial-duplicate web image search. 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA. IEEE, 2009. doi: 10.1109/CVPR.2009.5206566.
  • Saini I, Singh D, Khosla A. QRS detection using k-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res. 2013;4(4):331–344. doi:10.1016/j.jare.2012.05.007.
  • Ghael E P, Sayeed AM, Baraniuk RG. Improved wavelet denoising via empirical Wiener filtering. Proc SPIE – Int Soc Opt Eng. 1998;3169:389–399. doi:10.1117/12.292799.
  • Dong W, Zhang L, Shi G, et al. Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process. 2013;22(4):1620–1630. doi:10.1109/TIP.2012.2235847.
  • Bui AT, Im JK, Apley DW, et al. Projection-free kernel principal component analysis for denoising. Neurocomputing. 2019;357:163–176. doi:10.1016/j.neucom.2019.04.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.