289
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mining large-gradient subsidence monitoring using D-InSAR optimized by GNSS

, , , , &
Pages 207-218 | Received 04 May 2022, Accepted 03 Dec 2022, Published online: 18 Jan 2023

References

  • Xu B. The status quo of deep mining in my country’s coal mines and analysis of disaster prevention. China Pet Chem Stand Qual. 2020;40(16):192–193.
  • Li Z, Zhao M, Bai D, et al. Comparison of mining subsidence monitoring methods. Bull Surv Mapp. 2021;A1:270–273. DOI:10.13474/j.cnki.11-2246.2021.0561
  • Fan H, Gao X, Yang J, et al. Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods. Remote Sens. 2015;7(7):9166–9183. DOI:10.3390/rs70709166
  • Huang J, Deng K, Fan H, et al. An improved pixel-tracking method for monitoring mining subsidence. Remote Sens Lett. 2016;7(8):731–740. DOI:10.1080/2150704X.2016.1183177
  • Yang Z, Li Z, Zhu J, et al. Retrieving 3-D large displacements of mining areas from a single amplitude pair of SAR using offset tracking. Remote Sens (Basel). 2017;9(338):1–18. DOI:10.3390/rs9040338
  • Yang Z, Li Z, Zhu J, et al. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens (Basel). 2017;9(125):1–19. DOI:10.3390/rs9020125
  • He X. New deformation monitoring method and its application. Beijing: Science Press; 2007.
  • Szczerbowski Z, Jura J. Mining induced seismic events and surface deformations monitored by GPS permanent stations. Acta Geodyn Geomater. 2015;12(3):179. DOI:10.13168/AGG.2015.0023
  • Luo L, Ma W, Zhang Z, et al. Freeze/thaw-induced deformation monitoring and assessment of the slope in permafrost based on terrestrial laser scanner and GNSS. Remote Sens (Basel). 2017;9(3):198. DOI:10.3390/rs9030198
  • Psimoulis PA, Houlié N, Habboub M, et al. Detection of ground motions using high-rate GPS time-series. Geophys J Int. 2018;214(2):1237–1251. DOI:10.1093/gji/ggy198
  • Zhang X. Research on mining subsidence monitoring method based on UAV photogrammetry technology. Handan: Hebei University of Engineering; 2019.
  • Tang F, Lu J, Wei S, et al. Improvement of coal mining subsidence modeling method in Yushen mining area based on UAV LiDAR. J Coal Ind. 2020;45(7):2655–2666.
  • Hu X. Extraction method of subsidence cultivated land information in high groundwater level coal mine area based on UAV remote sensing. Taian: Shandong Agricultural University; 2020.
  • Ignjatović Stupar D, Rošer J, Vulić M. Investigation of unmanned aerial vehicles-based photogrammetry for large mine subsidence monitoring. Minerals. 2020;10(2):196. DOI:10.3390/min10020196
  • Zhang P. Research on subsidence monitoring of coal mining in mountainous areas based on time series InSAR technology. Xuzhou: China University of Mining and Technology; 2014.
  • Ishwar S, Kumar D. Application of DInSAR in mine surface subsidence monitoring and prediction. Curr Sci. 2017;112(1):46–51. DOI:10.18520/cs/v112/i01/46-51
  • Ilieva M, Rudziński Ł, Pawłuszek-Filipiak K, et al. Combined study of a significant mine collapse based on seismological and geodetic data—29 January 2019, Rudna Mine, Poland. Remote Sens. 2020;12(10):1570. DOI:10.3390/rs12101570
  • Zerbini S, Raicich F, Prati CM, et al. Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth Sci Rev. 2017;167:72–87. DOI:10.1016/j.earscirev.2017.02.009
  • Wang X, Aoki Y, Chen J. Surface deformation of Asama volcano, Japan, detected by time series InSAR combining persistent and distributed scatterers, 2014–2018. Earth Planets Space. 2019;71(1):1–16. DOI:10.1186/s40623-019-1104-9
  • Poyraz F, Hastaoğlu KÖ. Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arab J Geosci. 2020;13(17):1–11. DOI:10.1007/s12517-020-05834-5
  • Lemoine A, Briole P, Bertil D, et al. The 2018–2019 seismo-volcanic crisis east of Mayotte, Comoros islands: seismicity and ground deformation markers of an exceptional submarine eruption. Geophys J Int. 2020;223:22–44.
  • Zhao BC, Li HZ, Guo GL, et al. Study on high-precision regional monitoring method of high-grade highways subsidence under the influence of underground mining. Surv Rev. 2018;50(359):174–185. DOI:10.1080/00396265.2016.1252531
  • Wang L, Li N, Zhang X-n, et al. Full parameters inversion model for mining subsidence prediction using simulated annealing based on single line of sight D-InSAR. Environ Earth Sci. 2018;77(5):1–11. DOI:10.1007/s12665-018-7355-0
  • Alam MS, Kumar D, Sharma V, et al. Land surface deformation parameter estimation using persistent scatterer interferometry approach in an underground metal mining environment. Imaging Sci J. 2018;66(5):289–302. DOI:10.1080/13682199.2018.1450701
  • Hu B, Chen J, Zhang X. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors. 2019;19(14):3181. DOI:10.3390/s19143181
  • Wang L, Deng K, Fan H, et al. Monitoring of large-scale deformation in mining areas using sub-band InSAR and the probability integral fusion method. Int J Remote Sens. 2019;40(7):2602–2622. DOI:10.1080/01431161.2018.1528403
  • Ou D, Tan K, Du Q, et al. Decision fusion of D-InSAR and pixel offset tracking for coal mining deformation monitoring. Remote Sens (Basel). 2018;10(7):1055. DOI:10.3390/rs10071055
  • Xia Y, Wang Y, Du S, et al. Integration of D-InSAR and GIS technology for identifying illegal underground mining in Yangquan District, Shanxi Province, China. Environ Earth Sci. 2018;77(8):1–19. DOI:10.1007/s12665-018-7488-1
  • Yan S, Liu G, Deng K, et al. Large deformation monitoring over a coal mining region using pixel-tracking method with high-resolution Radarsat-2 imagery. Remote Sens Lett. 2016;7(3):219–228. DOI:10.1080/2150704X.2015.1126683
  • Diao X, Wu K, Zhou D, et al. Integrating the probability integral method for subsidence prediction and differential synthetic aperture radar interferometry for monitoring mining subsidence in Fengfeng, China. J Appl Remote Sens. 2016;10(1):016028. DOI:10.1117/1.JRS.10.016028
  • Diao X, Wu K, Hu D, et al. Combining differential SAR interferometry and the probability integral method for three-dimensional deformation monitoring of mining areas. Int J Remote Sens. 2016;37(21):5196–5212. DOI:10.1080/01431161.2016.1230284
  • Liu N, Dai W, Santerre R, et al. High spatio-temporal resolution deformation time series with the fusion of InSAR and GNSS data using spatio-temporal random effect model. IEEE Trans Geosci Remote Sens. 2018;57(1):364–380. DOI:10.1109/TGRS.2018.2854736
  • Zhou W. An improved GNSS and InSAR fusion method for monitoring the 3D deformation of a mining area. IEEE Access. 2021;P1:2169–3536.
  • Jazaeri S, Amiri-Simkooei AR, Sharifi MA. Iterative algorithm for weighted total least squares adjustment. Surv Rev. 2013;46(334):19–27. DOI:10.1179/1752270613y.0000000052
  • Li Z, Huang J. GPS surveying and data processing. Wuhan: Wuhan University Press; 2015.
  • Ji P, Lv X, Chen Q, et al. Applying InSAR and GNSS data to obtain 3-D surface deformations based on iterated almost unbiased estimation and Laplacian smoothness constraint. IEEE J Sel Top Appl Earth Obs Remote Sens. 2020;14:337–349.
  • Wang L, Deng K, Zheng M. Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. Int J Appl Earth Obs Geoinf. 2020;85:101981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.