232
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Adherence mechanisms in human pathogenic fungi

, , &
Pages 749-772 | Received 06 Dec 2007, Published online: 09 Jul 2009

References

  • Calderone R, Suzuki S, Cannon R, et al. Candida albicans: adherence, signaling and virulence. Med Mycol 2000; 38(Suppl. 1)125–137
  • Cotter G, Kavanagh K. Adherence mechanisms of Candida albicans. Br J Biomed Sci 2000; 57: 241–249
  • Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol 2001; 9: 327–335
  • Haynes K. Virulence in Candida species. Trends Microbiol 2001; 9: 591–596
  • Latgé JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol 2001; 9: 382–389
  • Sundström P. Adhesion in Candida spp. Cell Microbiol 2002; 4: 461–469
  • Yang YL. Virulence factors of Candida species. J Microbiol Immunol infect 2003; 36: 223–228
  • Rappleye CA, Goldman WE. Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 2006; 60: 281–303
  • Rupp S. Interactions of the fungal pathogen Candida albicans with the host. Future Microbiol 2007; 2: 141–151
  • San-Blas G. The cell wall of fungal human pathogens: its possible role in host-parasite relationships. Mycopathologia 1982; 79: 159–184
  • Chaffin WL, Lopez-Ribot J, Casanova M, Gozalbo D, Martinez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62: 130–180
  • Klis FM, de Groot P, Hellingwerf K. Molecular organization of the cell wall of Candida albicans. Med Mycol 2001; 39(Suppl. 1)1–8
  • Bernard M, Latgé JP. Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 2001; 39(Suppl. 1)9–17
  • Masuoka J. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses and experimental challenges. Clin Microb Rev 2004; 17: 281–310
  • Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. Bioessays 2006; 28: 799–808
  • Latgé JP. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007; 66: 279–290
  • de Groot PW, de Boer AD, Cunningham J, et al. Proteomics analysis of Candida albicans cell wall reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 2004; 3: 955–965
  • Kapteyn JC, Van Den Ende H, Klis FM. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochem Biophys Acta 1999; 1426: 373–383
  • Kanbe T, Yan Y, Redgrave B, Riesselman MH, Cutler JE. Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymph node tissue. Infect Immun 1993; 61: 2578–2584
  • Kanbe T, Cutler JE. Minimum chemical requirements for adhesion activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex. Exp Lung Res 2001; 27: 417–431
  • Dalle F, Jouault T, Trinel PA, et al. Beta-1,2- and alpha-1, 2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect Immun 2003; 71: 7061–7068
  • Dromer F, Chevalier R, Sendid B, et al. Synthetic analogues of beta-1,2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 2002; 46: 3869–3876
  • Timpel C, Zink S, Strahl-Bolsinger S, Schröppel K, Ernst J. Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen Candida albicans. J Bacteriol 2000; 182: 3063–3071
  • Munro CA, Bates S, Buurman ET, et al. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2005; 280: 1051–1060
  • Soares RM, de A, Soares RM, Alviano DS, et al. Identification of sialic acids on the cell surface of Candida albicans. Biochim Biophys Acta. 2000; 147: 262–268
  • Hawser SP, Douglas LJ. Biofim formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994; 62: 915–921
  • Hazen KC. Cell surface hydrophobicity of medically important fungi, specially Candida species. Microbial cell surface hydrophobicity, RJ Doyle, M Rosenberg. American Society for Microbiology, Washington, DC 1990; 249–295
  • Lopez-Ribot JL, Casanova M, Martinez JP, Sentandreu R. Characterization of cell wall proteins of yeast and hydrophobic mycelial cells of Candida albicans. Infect Immun 1991; 59: 2324–2332
  • Tronchin G, Bouchara JP, Robert R, Senet JM. Adherence of Candida albicans germ tubes to plastic: ultrastructural and molecular studies of fibrillar adhesins. Infect Immun 1988; 56: 1987–1993
  • Bouchara JB, Tronchin G, Annaix V, Robert R, Senet JM. Laminin receptors on Candida albicans germ tubes. Infect Immun 1990; 58: 48–54
  • Silva TM, Glee PM, Hazen KC. Influence of cell surface hydrophobicity on attachment of Candida albicans to extracellular matrix proteins. J Med Vet Mycol 1995; 33: 117–122
  • Samaranayake YH, Samaranayake LP, Yau JY, et al. Adhesion and cell-surface-hydrophobicity of sequentially isolated genetic isotypes of Candida albicans in an HIV-infected Southern Chinese cohort. Mycoses 2003; 46: 375–383
  • Luo G, Samaranayake LP. Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans. APMIS 2002; 110: 601–610
  • Panagoda GJ, Ellepola AN, Samaranayake LP. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity. Mycoses 2001; 44: 29–35
  • Henriques M, Azeredo J, Oliveira R. Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity. Br J Biomed Sci 2006; 63: 5–11
  • Melo LF, Bott TR, Fletcher M, Capdeville B. Biofilms-Science and Technology. Kluwer Academic Publishers, DordrechtThe Netherlands 1992
  • Nobile CJ, Mitchell AP. Regulation of cell surface genes and biofilm formation by the Candida albicans transcription factor Bcr1p. Curr Biol 2005; 15: 1150–1155
  • Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in Candida albicans biofilm formation in vitro and in vivo. PLoS Pathog 2006; 2: 636–649
  • Nobile CJ, Nett JE, Andes DR, Mitchell A. Function of Candida albicans adhesion Hwp1 in biofilm formation. Eukaryot Cell 2006; 5: 1604–1610
  • Alberti-Segui C, Morales AJ, Xing H, et al. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 2004; 21: 285–302
  • Sandini S, La Valle R, De Bernardis F, Macri C, Cassone A. The 65 kDa mannoprotein gene of Candida albicans encodes a putative β-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 2007; 9: 1223–1238
  • Consolaro ME, Gasparetto A, Svidzinski TI, Peralta RM. Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions. Mycopathologia 2006; 162: 75–82
  • Watts HJ, Cheah FS, Hube B, Sanglard D, Gow NA. Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic protease genes. FEMS Microbiol Lett 1998; 159: 129–135
  • Bektic J, Lell CP, Fuchs A, et al. HIV protease inhibitors attenuate adherence of Candida albicans to epithelial cells in vitro. Exp Lung Res 2001; 27: 417–431
  • Borg-von Zepelin M, Meyer I, Thomssen R, et al. HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol 1999; 113: 747–751
  • Filler SG. Candida-host cell receptors-ligand interactions. Curr Opin Microbiol 2006; 9: 333–339
  • Gaur NK, Klotz SA. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 1997; 65: 5289–5294
  • Sheppard DC, Yeaman MR, Welch WH, et al. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 2004; 16: 30480–30489
  • Loza L, Fu Y, Ibrahim AS, et al. Functional analysis of the Candida albicans ALS1 gene product. Yeast 2004; 21: 473–482
  • Cheng G, Wozniak K, Wallig MA, et al. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human specimens and models of vaginal candidiasis. Infect Immun 2005; 73: 1656–1663
  • Kamai Y, Kubota M, Kamai Y, et al. Contribution of Candida albicans ALS1 to the pathogenesis of experimental oropharyngeal candidiasis. Infect Immun 2002; 70: 5256–5258
  • Sandovsky-Losica H, Chaunan N, Calderone R, Segal E. Gene transcription studies of Candida albicans following infection of Hep2 epithelial cells. Med Mycol 2006; 44: 329–334
  • Rauceo JM, De Armond R, Otoo H, et al. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesion Als5p. Eukaryot Cell 2006; 5: 1664–1673
  • Gaur NK, Smith RL, Klotz SA. Candida albicans and Saccharomyces cerevisiae expressing ALA1/ALS5 adhere to accessible threonine, serine, or alanine patches. Cell Commun Adhes 2002; 9: 45–57
  • Klotz SA, Gaur NK, Lake DF, et al. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect Immun 2004; 72: 2029–2034
  • Zhao X, Oh SH, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 2004; 150: 2415–2428
  • Zhao X, Oh SH, Yeater KM, Hoyer LL. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 2005; 15: 1619–1630
  • Sundström P, Balish E, Allen CM. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oesophageal candidiasis in immunodeficient mice. J Infect Dis 2002; 185: 521–530
  • Santoni G, Gismondi A, Lin JH, et al. Candida albicans expresses a fibronectin receptor antigenically related to α5β1 integrin. Microbiology 1994; 140: 2971–2979
  • Gale CA, Bendel CM, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 1998; 279: 1355–1358
  • Klotz SA, Pendrak ML, Hein RC. Antibodies to α5β1 and αvβ3 integrin react with Candida albicans alcohol dehydrogenase. Microbiology 2001; 147: 3159–3164
  • De Las Penas A, Pan SJ, Castano I, et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 2003; 17: 2245–2258
  • Cormack BP, Ghori N, Falkow S. An adhesin of the yeast Candida glabrata mediating adherence to human epithelial cells. Science 1999; 285: 578–582
  • Domergue R, Castano I, De Las Penas A, et al. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 2005; 308: 866–870
  • Critchley IA, Douglas LJ. Role of glycosides as epithelial cell receptors for Candida albicans. J Gen Microbiol 1987; 133: 637–643
  • Alonso R, Llopis I, Flores C, Murgui A, Timoneda J. Different adhesins for type IV collagen on Candida albicans: identification of a lectin-like adhesin recognizing the 7S(IV) domain. Microbiology 2001; 147: 1971–1981
  • Kelly MT, MacCallum DM, Clancy SD, et al. The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Mol Microbiol 2004; 53: 969–983
  • Umeyama T, Kaneko A, Watanabe H, et al. Deletion of the CaB1G1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun 2006; 74: 2378–2381
  • Herrero AB, Magnelli P, Mansour MK, et al. KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 2004; 3: 1423–1432
  • Badrane H, Cheng S, Nguyen MH, et al. Candida albicans IRS4 contributes to hyphal formation and virulence after the initial stages of disseminated candidiasis. Microbiology 2005; 151: 2923–2931
  • Yu L, Lee KK, Ens K, et al. Partial characterization of a Candida albicans fimbrial adhesin. Infect Immun 1994; 62: 2834–2842
  • Jimenez-Lucho V, Ginsburg V, Krivan HC. Cryptococcus neoformans, Candida albicans and other fungi bind specifically to the glycosphingolipid lactosylceramide (Galβ1-4Glcβ1-1Cer), a possible adhesion receptor for yeast. Infect Immun 1990; 58: 2085–2090
  • Yu L, Lee KK, Sheth HB, et al. Fimbria-mediated adherence of Candida albicans to glycosphingolipid receptors on human buccal epithelial cells. Infect Immun 1994; 62: 2843–2848
  • Bouali A, Robert R, Tronchin G, Senet JM. Characterization of binding of human fibrinogen to the surface of germ tubes and mycelium of Candida albicans. J Gen Microbiol 1987; 133: 545–551
  • Tronchin G, Robert R, Bouali R, Senet JM. Immunocytochemical localization of in vitro binding of human fibrinogen to Candida albicans germ tubes and mycelium. Ann Inst Pasteur Microbiol 1987; 138: 177–187
  • Tronchin G, Bouchara JP, Robert R. Dynamic changes of the cell wall surface of Candida albicans associated with germination and adherence. Eur J Cell Biol 1989; 50: 285–290
  • Annaix V, Bouchara JB, Tronchin G, Senet JM, Robert R. Structures involved in the binding of human fibrinogen to Candida albicans germ tubes. FEMS Microbiol Immunol 1990; 64: 147–154
  • Casanova M, Lopez-Ribot JL, Monteagudo C, et al. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans. Infect Immun 1992; 60: 4221–4229
  • Sepulveda P, Murgui A, Lopez-Ribot D, et al. Evidence for the presence of collagenous domains in Candida albicans cell surface proteins. Infect Immun 1995; 63: 2173–2179
  • Sepulveda P, Lopez-Ribot D, Gozalbo D, et al. Ubiquitin-like epitopes associated with Candida albicans cell surface receptors. Infect Immun 1996; 64: 4406–4408
  • Calderone RA, Scheld WM. Role of fibronectin in the pathogenesis of candidal infections. Rev Infect Dis 1987; 9(Suppl. 4)400–403
  • Robert R, Mahaza C, Miègeville M, et al. Binding of resting platelets to Candida albicans germ tubes. Infect Immun 1996; 64: 3752–3757
  • Heidenreich F, Dierich MP. Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b: influence of dialysis. Infect Immun 1985; 50: 598–600
  • Wadsworth E, Prasad SC, Calderone R. Analysis of mannoprotein from blastoconidia and hyphae of Candida albicans with a common epitope recognized by anti-complement receptor type 2 antibodies. Infect Immun 1993; 61: 4675–4681
  • Lopez-Ribot JL, Martinez JP, Chaffin WL. Comparative study of the C3d receptor and 58-kilodalton fibrinogen-binding mannoproteins of Candida albicans. Infect Immun 1995; 63: 2126–2132
  • Fukayama ME, Wadsworth E, Calderone RA. Expression of the C3d-binding protein (CR2) from Candida albicans during experimental candidiasis as measured by lymphoblastogenesis. Infect Immun 1992; 60: 8–12
  • Kanbe T, Li RK, Wadsworth E, Calderone RA, Cutler JE. Evidence for expression of the C3d receptor of Candida albicans in vitro and in vivo by immunofluorescence and immunoelectron microscopy. Infect Immun 1991; 59: 1832–1838
  • Eigentler A, Schulz TF, Larcher C, et al. C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor type 3. Infect Immun 1989; 57: 616–622
  • Hostetter MK, Lorenz JS, Preus L, Kendrick KE. The iC3b receptor on Candida albicans: subcellular localization and modulation of receptor expression by glucose. J Infect Dis 1990; 161: 761–768
  • Alaei S, Larcher C, Ebenbichler C, et al. Isolation and biochemical characterization of the iC3b receptor of Candida albicans. Infect Immun 1993; 61: 1395–1399
  • Gustafson KS, Vercellotti GM, Bendel CM, Hostetter MK. Molecular mimicry in Candida albicans. Role of an integrin analogue in adhesion of the yeast to human endothelium. J Clin Invest 1991; 87: 1896–1902
  • Bendel CM, St Sauver J, Carison S, Hostetter M. Epithelial adhesion in yeast species: correlation with surface expression of the integrin analog. J Infect Dis 1995; 171: 1660–1663
  • Ollert MW, Wadsworth E, Calderone RA. Reduced expression of the functionally active complement receptor for iC3b but not for C3d on an avirulent mutant of Candida albicans. Infect Immun 1990; 58: 909–913
  • Lee KH, Yoon MS, Chun WH. The effects of monoclonal antibodies against iC3b receptors in mice with experimentally induced disseminated candidiasis. Immunology 1997; 92: 104–110
  • Klotz SA, Smith RL. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix. J Infect Dis 1991; 163: 604–610
  • Klotz SA, Smith RL, Stewart BW. Effect of an arginine-glycine-aspartic acid-containing peptide on hematogenous candidal infections. Antimicrob Agents Chemother 1992; 36: 132–136
  • Lopez-Ribot JL, Casanova M, Monteagudo C, Sepulveda P, Martinez JP. Evidence for the presence of a high affinity laminin receptor-like molecule on the surface of Candida albicans yeasts cells. Infect Immun 1994; 62: 742–746
  • Skerl KG, Calderone RA, Segal E, Sreevalsan T, Scheld WM. In vitro binding of Candida albicans yeast cells to human fibronectin. Can J Microbiol 1984; 30: 221–227
  • Kalo A, Segal E, Sahar E, Dayan D. Interaction of Candida albicans with genital mucosal surfaces: involvement of fibronectin in adherence. J Infect Dis 1988; 157: 1253–1256
  • Hazen KC, Hazen BW. Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun 1992; 60: 1499–1508
  • Yan SE, Nègre E, Cashel JA, et al. Specific induction of fibronectin binding activity by haemoglobin in Candida albicans grown in defined media. Infect Immun 1996; 64: 2930–2935
  • Klotz SA, Rutten MJ, Smith RL, Babcock SR, Cunningham MD. Adherence of Candida albicans to immobilized extracellular matrix proteins is mediated by calcium-dependent surface glycoproteins. Microb Pathog 1993; 14: 133–147
  • Santoni G, Birarelli P, Hong LJ, et al. An α5β1-like integrin receptor mediates the binding of less pathogenic Candida species to fibronectin. J Med Microbiol 1995; 43: 360–367
  • Klotz SA, Smith RL. Gelatin fragments block adherence of Candida albicans to extracellular matrix proteins. Microbiology 1995; 141: 2681–2684
  • Lopez-Ribot JL, Chaffin WL. Binding of the extracellular matrix component entactin to Candida albicans. Infect Immun 1994; 62: 4564–4571
  • Jakab E, Paulsson M, Ascencio F, Ljungh A. Expression of vitronectin and fibronectin binding by Candida albicans yeast cells. APMIS 1993; 101: 187–193
  • Santoni G, Spreghini E, Lucciarini R, Amantini C, Piccoli M. Involvement of αvβ3 integrin-like receptor and glycosaminoglycans in Candida albicans germ tube adhesion to vitronectin and to a human endothelial cell line. Microb Pathog 2001; 31: 159–172
  • Spreghini E, Gismondi A, Piccoli M, Santoni G. Evidence for αvβ3 and αvβ5 integrin-like vitronectin (VN) receptors in Candida albicans and their involvement in yeast cell adhesion to VN. J Infect Dis 1999; 180: 156–166
  • Limper AH, Standing JE. Vitronectin interacts with Candida albicans and augments organism attachment to the NR8383 macrophage cell line. Immunol Lett 1994; 42: 139–144
  • Olson EJ, Standing JE, Griego-Harper N, Hoffman OA, Limper AH. Fungal β-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages. Infect Immun 1996; 64: 3548–3554
  • Lopez-Ribot JL, Bikandi J, San Millan RS, Chaffin WL. Interactions between Candida albicans and the human extracellular matrix component tenascin-C. Mol Cell Biol Res Commun 1999; 2: 58–63
  • Cannon RD, Nand K, Jenkison HF. Adherence of Candida albicans to human salivary components adsorbed to hydroxyapatite. Microbiology 1995; 141: 213–219
  • Holmes AR, Van Der Wielen P, Cannon RD. Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 488–494
  • Hoffman MP, Haidaris CG. Analysis of Candida albicans adhesion to salivary mucin. Infect Immun 1993; 61: 1940–1949
  • San Millan R, Elguezabal N, Regulez P, et al. Effect of salivary secretory IgA on the adhesion of Candida albicans to polystyrene. Microbiology 2000; 146: 2105–2112
  • Elguezabal N, Maza JL, Ponton J. Inhibition of adherence of Candida albicans and Candida dubliniensis to a resin composite restorative dental material by salivary secretory IgA and monoclonal antibodies. Oral Dis 2004; 10: 81–86
  • Jeng HW, Holmes AR, Cannon RD. Characterization of two Candida albicans surface mannoprotein adhesins that bind immobilized saliva components. Med Mycol 2005; 43: 209–217
  • De Repentigny L, Aumont F, Bernard K, Belhumeur P. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun 2000; 68: 3172–3179
  • Yokomura I, Iwasaki Y, Nagata K, et al. Role of intercellular adhesion molecule 1 in acute lung injury induced by candidemia. Exp Lung Res 2001; 27: 417–431
  • Phan QT, Fratti RA, Prasadarao NV, Edwards JE, Jr, Filler SG. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 2005; 280: 10455–10461
  • Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 1999; 12: 310–350
  • Tekaia F, Latgé JP. Aspergillus fumigatus: saprophyte or pathogen?. Curr Opin Microbiol 2005; 8: 385–392
  • Bouchara JP, Sanchez M, Esnault K, Tronchin G. Interactions between Aspergillus fumigatus and host matrix proteins. Contrib Microbiol 1999; 2: 167–181
  • DeHart DJ, Agwu DE, Julian NC, Washburn RG. Binding and germination of Aspergillus fumigatus conidia on cultured A549 pneumocytes. J Infect Dis 1997; 175: 146–150
  • Paris S, Boisvieux-Ulrich E, Crestani B, et al. Internalization of Aspergillus fumigatus conidia by epithelial and endothelial cells. Infect Immun 1997; 65: 1510–1514
  • Wasylnka JA, Moore MM. Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 2002; 70: 3156–3163
  • Wasylnka JA, Moore MM. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 2003; 116: 1579–1587
  • Wasylnka JA, Hissen AH, Wan AN, Moore MM. Intracellular and extracellular growth of Aspergillus fumigatus. Med Mycol 2005; 43(Suppl. 1)S27–30
  • Lopes-Bezerra LM, Filler SG. Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood 2004; 103: 2143–2149
  • Cimon B, Carrère J, Chazalette JP, et al. Mycoses bronchopulmonaires au cours de la mucoviscidose. Résultats d'une étude épidémiologique longitudinale sur une période de 5 ans. J Mycol Méd 2000; 10: 128–135
  • Tronchin G, Bouchara JP, Larcher G, Lissitzky JC, Chabasse D. Interaction between Aspergillus fumigatus and basement membrane laminin: binding and substrate degradation. Biol Cell 1993; 77: 201–208
  • Annaix V, Bouchara JP, Larcher G, Chabasse D, Tronchin G. Specific binding of human fibrinogen fragment D to Aspergillus fumigatus conidia. Infect Immun 1992; 60: 1747–1755
  • Coulot P, Bouchara JP, Renier G, et al. Specific interaction of Aspergillus fumigatus with fibrinogen and its role in cell adhesion. Infect Immun 1994; 62: 2169–2177
  • Bouchara JP, Sanchez M, Chevailler A, et al. Sialic acid-dependent recognition of laminin and fibrinogen by Aspergillus fumigatus conidia. Infect Immun 1997; 65: 2717–2724
  • Bromley IM, Donaldson K. Binding of Aspergillus fumigatus spores to lung epithelial cells and basement membrane proteins: relevance to the asthmatic lung. Thorax 1996; 51: 1203–1209
  • Tome L, Rex JH, Grazziutti MG, Anaissie EJ, Savary CA. Binding of Aspergillus fumigatus (AF) conidia to A549 pneumocytes is inhibited by laminin, fibonectin, and RGDS peptide. Clin Infect Dis 1997; 25: 378
  • Yang Z, Jaeckisch SM, Mitchell CG. Enhanced binding of Aspergillus fumigatus spores to A549 epithelial cells and extracellular matrix proteins by a component from the spore surface and inhibition by rat lung lavage fluid. Thorax 2000; 55: 579–584
  • Tronchin G, Esnault K, Renier G, et al. Expression and identification of a laminin-binding protein in Aspergillus fumigatus conidia. Infect Immun 1997; 65: 9–15
  • Gil ML, Peñalver MC, Lopez-Ribot JL, O'Connor JE, Martinez JP. Binding of extracellular matrix proteins to Aspergillus fumigatus conidia. Infect Immun 1996; 64: 5239–5247
  • Rao CN, Castronovo V, Schmitt MC, et al. Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry 1989; 28: 7476–7486
  • Banerjee B, Greenberger PA, Fink JN, Kurup VP. Immunological characterization of Asp f 2, a major allergen from Aspergillus fumigatus associated with allergic bronchopulmonary aspergillosis. Infect Immun 1998; 66: 5175–5182
  • Tronchin G, Bouchara JP, Annaix V, Robert R, Senet JM. Fungal cell adhesion molecules in Candida albicans. Eur J Epidemiol 1991; 7: 23–33
  • Peñalver MC, O'Connor JE, Martinez JP, Gil ML. Binding of human fibronectin to Aspergillus fumigatus conidia. Infect Immun 1996; 64: 1146–1153
  • Arumugham RG, Hsieh TC, Tanzer ML, Laine RA. Structures of the asparagine-linked sugar chains of laminin. Biochim Biophys Acta 1986; 883: 112–126
  • Hamilton AJ, Jeavons L, Youngchim S, Vanittanakom N, Hay RJ. Sialic acid-dependent recognition of laminin by Penicillium marneffei conidia. Infect Immun 1998; 66: 6024–6026
  • Tronchin G, Esnault K, Sanchez M, et al. Purification and partial characterization of a 32-kilodalton sialic acid-specific lectin from Aspergillus fumigatus. Infect Immun 2002; 70: 6891–6895
  • Ishimaru T, Bernard EM, Tamada S, Armstrong D. The fucose specific lectin (FSL) produced by Aspergillus fumigatus may promote attachment of conidia to mammalian cells (Letter). Clin Infect Dis 1996; 23: 898
  • Parta M, Chang Y, Rulong S, Pinto-DaSilva P, Kwon-Chung KJ. HYP1, a hydrophobin gene from Aspergillus fumigatus, complements the rodletless phenotype in Aspergillus nidulans. Infect Immun 1994; 62: 4389–4395
  • Thau N, Monod M, Crestani B, et al. Rodletless mutants of Aspergillus fumigatus. Infect Immun 1994; 62: 4380–4388
  • Scholtmeijer K, Wessels JG, Wosten HA. Fungal hydrophobins in medical and technical applications. Appl Microbiol Biotechnol 2001; 56: 1–8
  • Hess WM, Stocks DL. Surface characteristics of Aspergillus conidia. Mycologia 1969; 61: 560–571
  • Zhao L, Schaefer D, Marten MR. Assessment of elasticity and topography of Aspergillus nidulans spores via atomic force microscopy. Appl Environ Microbiol 2005; 71: 955–960
  • Paris S, Debeaupuis JP, Crameri R, et al. Conidial hydrophobins of Aspergillus fumigatus. Appl Environ Microbiol 2003; 69: 1581–1588
  • Tronchin G, Bouchara JP, Ferron M, Larcher G, Chabasse D. Cell surface properties of Aspergillus fumigatus conidia: correlation between adherence, agglutination, and rearrangements of the cell wall. Can J Microbiol 1995; 41: 714–721
  • Wasylnka JA, Moore MM. Adhesion of Aspergillus species to extracellular matrix proteins: evidence for involvement of negatively charged carbohydrates on the conidial surface. Infect Immun 2000; 68: 3377–3384
  • Wasylnka JA, Simmer MI, Moore MM. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Microbiology 2001; 147: 869–877
  • Warwas ML, Watson JN, Bennet AJ, Moore MM. Structure and role of sialic acids on the surface of Aspergillus fumigatus conidiospores. Glycobiology 2007; 17: 401–410
  • Girardin H, Paris S, Rault J, Bellon-Fontaine MN, Latgé JP. The role of the rodlet structure on the physicochemical properties of Aspergillus conidia. Lett Appl Microbiol 1999; 29: 364–369
  • Bouchara JP, Bouali A, Tronchin G, et al. Binding of fibrinogen to the pathogenic Aspergillus species. J Med Vet Mycol 1988; 26: 327–334
  • Davril M, Degroote S, Humbert P, et al. The sialylation of bronchial mucins secreted by patients suffering from cystic fibrosis or from chronic bronchitis is related to the severity of airway infection. Glycobiology 1999; 9: 311–321
  • Bouchara JP, Oumeziane NA, Lissitzky JC, et al. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components. Eur J Cell Biol 1996; 70: 76–83
  • Dong X, Shi W, Zeng Q, Xie L. Roles of adherence and matrix metalloproteinases in growth patterns of fungal pathogens in cornea. Curr Eye Res 2005; 30: 613–620
  • Pinto MR, de Sá AC, Limongi CL, et al. Involvement of peptidorhamnomannan in the interaction of Pseudallescheria boydii and HEp2 cells. Microbes Infect 2004; 6: 1259–1267
  • Esquenazi D, de Souza W, Alviano CS, Rozental S. The role of surface carbohydrates on the interaction of microconidia of Trichophyton mentagrophytes with epithelial cells. FEMS Immunol Med Microbiol 2003; 35: 113–123
  • Esquenazi D, Alviano CS, de Souza W, Rozental S. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol 2004; 155: 144–153
  • Hogan LH, Klein BS. Transforming DNA integrates at multiple sites in the dimorphic fungal pathogen Blastomyces dermatitidis. Gene 1997; 186: 219–226
  • Bradsher RW, Chapman SW, Pappas PG. Blastomycosis. Infect Dis Clin Norht Am 2003; 17: 21–40
  • Klein BS, Sondel PM, Jones JM. WI-1, a novel 120-kilodalton surface protein on Blastomyces dermatitidis yeast cells, is a target antigen of cell-mediated immunity in human blastomycosis. Infect Immun 1992; 60: 4291–4300
  • Klein BS, Jones JM. Purification and characterization of the major antigen WI-1 from Blastomyces dermatitidis yeasts and immunological comparison with A antigen. Infect Immun 1994; 62: 3890–3900
  • Newman SL, Chaturvedi S, Klein BS. The WI-1 antigen of Blastomyces dermatitidis yeasts mediates binding to human macrophage CD11b/CD18 (CR3) and CD14. J Immunol 1995; 154: 753–761
  • Hogan LH, Josvai S, Klein BS. Genomic cloning, characterization, and functional analysis of the major surface adhesin WI-1 on Blastomyces dermatitidis yeasts. J Biol Chem 1995; 270: 30725–30732
  • Brandhorst TT, Wuthrich M, Warner T, Klein B. Targeted gene disruption reveals an adhesin indispensable for pathogenicity of Blastomyces dermatitidis. J Exp Med 1999; 189: 1207–1216
  • Rooney PJ, Sullivan TD, Klein BS. Selective expression of the virulence factor BAD1 upon morphogenesis to the pathogenic yeast form of Blastomyces dermatitidis: evidence for transcriptional regulation by a conserved mechanism. Mol Microbiol 2001; 39: 875–889
  • Finkel-Jimenez B, Wuthrich M, Klein BS. BAD1, an essential virulence factor of Blastomyces dermatitidis, suppresses host TNF-alpha production through TGF-beta-dependent and -independent mechanisms. J Immunol 2002; 168: 5746–5755
  • Brandhorst T, Klein B. Cell wall biogenesis of Blastomyces dermatitidis. Evidence for a novel mechanism of cell surface localization of a virulence-associated adhesin via extracellular release and reassociation with cell wall chitin. J Biol Chem 2000; 275: 7925–7934
  • Brandhorst TT, Gauthier GM, Stein RA, Klein BS. Calcium binding by the essential virulence factor BAD-1 of Blastomyces dermatitidis. J Biol Chem 2005; 280: 42156–42163
  • Klein BS, Chaturvedi S, Hogan LH, Jones JM, Newman SL. Altered expression of surface protein WI-1 in genetically related strains of Blastomyces dermatitidis that differ in virulence regulates recognition of yeasts by human macrophages. Infect Immun 1994; 62: 3536–3542
  • Klein BS, Hogan LH, Jones JM. Immunologic recognition of a 25-amino acid repeat arrayed in tandem on a major antigen of Blastomyces dermatitidis. J Clin Invest 1993; 92: 330–337
  • Deepe GS, Jr, Bullock WE. Histoplasmosis: a granulomatous inflammatory response. Inflammation: Basic Principles and Clinical Correlates2nd ed, JI Gallin, IM Goldstein, R Snyderman. New York, Raven Press; 1992. 1992; 943–948
  • McMahon JP, Wheat J, Sobel ME, et al. Murine laminin binds to Histoplasma capsulatum. A possible mechanism of dissemination. J Clin Invest 1995; 96: 1010–1017
  • Long KH, Gomez FJ, Morris RE, Newman SL. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J Immunol 2003; 170: 487–494
  • Gildea LA, Morris RE, Newman SL. Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 2001; 166: 1049–1056
  • Habich C, Kempe K, Gomez FJ, et al. Heat shock protein 60: identification of specific epitopes for binding to primary macrophages. FEBS Lett 2006; 580: 115–120
  • Bohse ML, Woods JP. Surface localization of the Yps3p protein of Histoplasma capsulatum. Eukaryot Cell 2005; 4: 685–693
  • Lupi O, Tyring SK, McGinnis MR. Tropical dermatology: fungal tropical diseases. J Am Acad Dermatol 2005; 53: 931–951
  • Puccia R, Schenkman S, Gorin PA, Travassos LR. Exocellular components of Paracoccidioides brasiliensis: identification of a specific antigen. Infect Immun 1986; 53: 199–206
  • Straus AH, Freymuller E, Travassos LR, Takahashi HK. Immunochemical and subcellular localization of the 43 kDa glycoprotein antigen of Paracoccidioides brasiliensis with monoclonal antibodies. J Med Vet Mycol 1996; 34: 181–186
  • Vicentini AP, Gesztesi JL, Franco MF, et al. Binding of Paracoccidioides brasiliensis to laminin through surface glycoprotein gp43 leads to enhancement of fungal pathogenesis. Infect Immun 1994; 62: 1465–1469
  • Almeida SR, Unterkircher CS, Camargo ZP. Involvement of the major glycoprotein (gp43) of Paracoccidioides brasiliensis in attachment to macrophages. Med Mycol 1998; 36: 405–411
  • Hanna SA, Monteiro da Silva JL, Giannini MJ. Adherence and intracellular parasitism of Paracoccidioides brasiliensis in Vero cells. Microbes Infect 2000; 2: 877–884
  • Mendes-Giannini MJ, Andreotti PF, Vincenzi LR, et al. Binding of extracellular matrix proteins to Paracoccidioides brasiliensis. Microbes Infect 2006; 8: 1550–1559
  • Vicentini AP, Moraes JZ, Gesztesi JL, et al. Laminin-binding epitope on gp43 from Paracoccidioides brasiliensis is recognized by a monoclonal antibody raised against Staphylococcus aureus laminin receptor. J Med Vet Mycol 1997; 35: 37–43
  • González A, Gomez BL, Restrepo A, Hamilton AJ, Cano LE. Recognition of extracellular matrix proteins by Paracoccidioides brasiliensis yeast cells. Med Mycol 2005; 43: 637–645
  • González A, Gomez BL, Diez S, et al. Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun 2005; 73: 2486–2495
  • González A, Cano E, Muñoz C, et al. Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which subsequently participate in adherence to human type II alveolar cells: Involvement of a specific adhesin. Microb Pathog 2008; 44: 389–401
  • Coltri KC, Casabona-Fortunato AS, Gennari-Cardoso ML, et al. Paracoccin, a GlcNAc-binding lectin from Paracoccidioides brasiliensis, binds to laminin and induces TNF-alpha production by macrophages. Microbes Infect 2006; 8: 704–713
  • Barbosa MS, Bao SN, Andreotti PF, et al. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 2006; 74: 382–389
  • Gozalbo D, Gil-Navarro I, Azorin I, et al. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 1998; 66: 2052–2059
  • Alvarez RA, Blaylock MW, Baseman JB. Surface localized glyceraldehyde-3-phosphate dehydrogenase of Mycoplasma genitalium binds mucin. Mol Microbiol 2003; 48: 1417–1425
  • Brassard J, Gottschalk M, Quessy S. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Vet Microbiol 2004; 102: 87–94
  • Pereira LA, Bao SN, Barbosa MS, et al. Analysis of the Paracoccidioides brasiliensis triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast Res 2007; 7: 1381–1388
  • Lopes-Bezerra LM, Schubach A, Costa RO. Sporothrix schenckii and sporotrichosis. An Acad Bras Cienc 2006; 78: 293–308
  • Yelverton CB, Stetson CL, Bang RH, Clark JW, Butler DF. Fatal sporotrichosis. Cutis 2006; 78: 253–256
  • Lima OC, Figueiredo CC, Pereira BA, et al. Adhesion of the human pathogen Sporothrix schenckii to several extracellular matrix proteins. Braz J Med Biol Res 1999; 32: 651–657
  • Lima OC, Bouchara JP, Renier G, et al. Immunofluorescence and flow cytometry analysis of fibronectin and laminin binding to Sporothrix schenckii yeast cells and conidia. Microb Pathog 2004; 37: 131–140
  • Lima OC, Figueiredo CC, Previato JO, et al. Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin. Infect Immun 2001; 69: 6874–6880
  • Tamura GS, Kuypers JM, Smith S, Raff H, Rubens CE. Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun 1994; 62: 2450–2458
  • Oda LM, Kubelka CF, Alviano CS, Travassos LR. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages. Infect Immun 1983; 39: 497–504
  • Figueiredo CC, de Lima OC, de Carvalho L, Lopes-Bezerra LM, Morandi V. The in vitro interaction of Sporothrix schenckii with human endothelial cells is modulated by cytokines and involves endothelial surface molecules. Microb Pathog 2004; 36: 177–188
  • Fernandes KS, Coelho AL, Lopes Bezerra LM, Barja-Fidalgo C. Virulence of Sporothrix schenckii conidia and yeast cells, and their susceptibility to nitric oxide. Immunology 2000; 101: 563–569
  • Figueiredo CC, Deccache PM, Lopes-Bezerra LM, Morandi V. TGF-beta1 induces transendothelial migration of the pathogenic fungus Sporothrix schenckii by a paracellular route involving extracellular matrix proteins. Microbiology 2007; 153: 2910–2921
  • Hung CY, Yu JJ, Seshan KR, Reichard U, Cole GT. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infect Immun 2002; 70: 3443–3456
  • Santos AL, Palmeira VF, Rozental S, et al. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev FEMS Microbiol Rev 2007; 31: 570–591
  • Lopez Martinez R, Méndez Tovar LJ. Chromoblastomycosis. Clin Dermatol 2007; 25: 188–194
  • Limongi CL, Rozental S, Alviano CS, de Souza W. The influence of surface carbohydrates on the interaction of Fonsecaea pedrosoi with Chinese hamster ovary glycosylation mutant cells. Mycopathologia 1997; 138: 127–135
  • Limongi CL, Alviano CS, de Souza W, Rozental S. Isolation and partial characterization of an adhesin from Fonsecaea pedrosoi. Med Mycol 2001; 39: 429–437

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.