165
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Glycyrrhizin improves bone metabolism in ovariectomized mice via inactivating NF-κB signaling

, , &
Pages 253-260 | Received 16 Jan 2020, Accepted 22 Sep 2020, Published online: 21 Oct 2020

References

  • Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol 2011;6:121–45
  • Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause 2010;17:25–54
  • Lyritis GP, Georgoulas T, Zafeiris CP. Bone anabolic versus bone anticatabolic treatment of postmenopausal osteoporosis. Ann N Y Acad Sci 2010;1205:277–83
  • Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med 1978;92:964–70
  • Eriksen EF, Hodgson SF, Eastell R, et al. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990;5:311–19
  • Garnero P, Sornay-Rendu E, Chapuy M-C, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 2009;11:337–49
  • Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 2017;168:37–57
  • Wang C, Steer JH, Joyce DA, et al. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits osteoclastogenesis by suppressing RANKL-induced NF-kappaB activation. J Bone Miner Res 2003;18:2159–68
  • Li C, Yang Z, Li Z, et al. Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways. J Bone Miner Res 2011;26:644–56
  • Chen X, Zhi X, Pan P, et al. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. Faseb J 2017;31:4855–65
  • Cheng L, Zhou S, Zhao Y, et al. Tanshinone IIA attenuates osteoclastogenesis in ovariectomized mice by inactivating NF-kB and Akt signaling pathways. Am J Transl Res 2018;10:1457–68
  • Alles N, Soysa NS, Hayashi J, et al. Suppression of NF-kappaB increases bone formation and ameliorates osteopenia in ovariectomized mice. Endocrinology 2010;151:4626–34
  • Pompei R, Flore O, Marccialis MA, et al. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979;281:689–90
  • Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003;361:2045–6
  • Cheng HS, Yaw HP, Ton SH, et al. Glycyrrhizic acid prevents high calorie diet-induced metabolic aberrations despite the suppression of peroxisome proliferator-activated receptor γ expression. Nutrition 2016;32:995–1001
  • Huo X, Yang S, Sun X, et al. Protective effect of glycyrrhizic acid on alcoholic liver injury in rats by modulating lipid metabolism. Molecules 2018;23:1623
  • Li J, Shi J, Sun Y, et al. Glycyrrhizin, a potential drug for autoimmune encephalomyelitis by inhibiting high-mobility group box 1. DNA Cell Biol 2018;37:941–6
  • Li Z, Chen C, Zhu X, et al. Glycyrrhizin suppresses RANKL-induced osteoclastogenesis and oxidative stress through inhibiting NF-κB and MAPK and activating AMPK/Nrf2. Calcif Tissue Int 2018;103:324–37
  • Yin Z, Zhu W, Wu Q, et al. Glycyrrhizic acid suppresses osteoclast differentiation and postmenopausal osteoporosis by modulating the NF-κB, ERK, and JNK signaling pathways. Eur J Pharmacol 2019;859:172550
  • Liu X, Chin J-F, Qu X, et al. The beneficial effect of praeruptorin c on osteoporotic bone in ovariectomized mice via suppression of osteoclast formation and bone resorption. Front Pharmacol 2017;8:627
  • Tang Y, Peng Y, Liu J, et al. Early inflammation-associated factors blunt sterol regulatory element-binding proteins-1-mediated lipogenesis in high-fat diet-fed APPSWE /PSEN1dE9 mouse model of Alzheimer's disease. J Neurochem 2016;136:791–803
  • Guo D, Hong D, Wang P, et al. Histone deacetylase inhibitor CI-994 inhibits osteoclastogenesis via suppressing NF-κB and the downstream c-Fos/NFATc1 signaling pathways. Eur J Pharmacol 2019;848:96–104
  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337–42
  • Skafar DF, Xu R, Morales J, et al. Clinical review 91: female sex hormones and cardiovascular disease in women. J Clin Endocrinol Metab 1997;82:3913–18
  • Rosano GMC, Vitale C, Marazzi G, et al. Menopause and cardiovascular disease: the evidence. Climacteric 2007;10(Suppl 1):19–24
  • Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003;88:2404–11
  • Rocca WA, Grossardt BR, Shuster LT. Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Brain Res 2011;1379:188–98
  • Bove R, Secor E, Chibnik LB, et al. Age at surgical menopause influences cognitive decline and Alzheimer pathology in older women. Neurology 2014;82:222–9
  • Pike CJ. Sex and the development of Alzheimer's disease. J Neurosci Res 2017;95:671–80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.