180
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Subtle visuomotor deficits and reduced benefit from practice in early treated phenylketonuria

, , , , , & show all
Pages 931-940 | Received 06 Oct 2015, Accepted 04 Jan 2017, Published online: 06 Feb 2017

References

  • Albrecht, J., Garbade, S. F., & Burgard, P. (2009). Neuropsychological speed tests and blood phenylalanine levels in patients with phenylketonuria: A meta-analysis. Neuroscience & Biobehavioral Reviews, 33(3), 414–421. doi:10.1016/j.neubiorev.2008.11.001
  • Anderson, P. J., Wood, S. J., Francis, D. E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are neuropsychological impairments in children with ET phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Developmental Neuropsychology, 32(2), 645–668. doi:10.1080/87565640701375963
  • Araujo, G. C., Christ, S. E., Steiner, R. D., Grange, D. K., Nardos, B., McKinstry, R. C., & White, D. A. (2009). Response monitoring in children with phenylketonuria. Neuropsychology, 23(1), 130. doi:10.1037/a0013488
  • Arnold, G. L., Kramer, B. M., Kirby, R. S., Plumeau, P. B., Blakely, E. M., Cregan, L. S., & Davidson, P. W. (1998). Factors affecting cognitive, motor, behavioral and executive functioning in children with phenylketonuria. Acta Paediatrica, 87(5), 565–570. doi:10.1111/j.1651-2227.1998.tb01505.x
  • Brumm, V. L., Azen, C., Moats, R. A., Stern, A. M., Broomand, C., Nelson, M. D., & Koch, R. (2004). Neuropsychological outcome of subjects participating in the PKU adult collaborative study: A preliminary review. Journal of Inherited Metabolic Disease, 27(5), 549–566. doi:10.1023/B:BOLI.0000042985.02049.ff
  • Butler, I., O’Flynn, M., Seifert, W., Jr, & Howell, R. R. (1981). Neurotransmitter defects and treatment of disorders of hyperphenylalaninemia. The Journal of Pediatrics, 98(5), 729–733. doi:10.1016/S0022-3476(81)80832-3
  • Channon, S., Mockler, C., & Lee, P. (2005). Executive functioning and speed of processing in phenylketonuria. Neuropsychology, 19(5), 679. doi:10.1037/0894-4105.19.5.679
  • Christ, S. E., Huijbregts, S. C., de Sonneville, L. M., & White, D. A. (2010). Executive function in ET phenylketonuria: Profile and underlying mechanisms. Molecular Genetics and Metabolism, 99, S22–S32. doi:10.1016/j.ymgme.2009.10.007
  • Dawson, C., Murphy, E., Maritz, C., Chan, H., Ellerton, C., Carpenter, R. H. S., & Lachmann, R. H. (2011). Dietary treatment of phenylketonuria: The effect of phenylalanine on reaction time. Journal of Inherited Metabolic Disease, 34, 449–454. doi:10.1007/s10545-010-9276-2
  • Diamond, A., & Baddeley, A. (1996). Evidence for the importance of dopamine for prefrontal cortex functions early in life [and discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 1483–1494. doi:10.1098/rstb.1996.0134
  • Diamond, A., Prevor, M. B., Callender, G., & Druin, D. P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62, i. doi:10.2307/1166208
  • Forster, K., & Forster, J. (1999). DMDX [Computer software]. Tucson: University of Arizona.
  • Gassió, R., Vilaseca, M., Lambruschini, N., Boix, C., Fuste, M., & Campistol, J. (2010). Cognitive functions in patients with phenylketonuria in long-term treatment with tetrahydrobiopterin. Molecular Genetics and Metabolism, 99, S75–S78. doi:10.1016/j.ymgme.2009.10.187
  • Golden, C. J., & Freshwater, S. M. (2002). The Stroop color and word test: A manual for clinical and experimental uses. Chicago, IL: Stoelting.
  • Henderson, R., McCulloch, D., Herbert, A., Robinson, P., & Taylor, M. (2000). Visual event‐related potentials in children with phenylketonuria. Acta Paediatrica, 89(1), 52–57. doi:10.1111/j.1651-2227.2000.tb01187.x
  • Hoeksma, M., Reijngoud, D.-J., Pruim, J., de Valk, H. W., Paans, A. M., & Van Spronsen, F. J. (2009). Phenylketonuria: High plasma phenylalanine decreases cerebral protein synthesis. Molecular Genetics and Metabolism, 96(4), 177–182. doi:10.1016/j.ymgme.2008.12.019
  • Hood, A., Grange, D. K., Christ, S. E., Steiner, R., & White, D. A. (2014). Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Molecular Genetics and Metabolism, 111(4), 445–451. doi:10.1016/j.ymgme.2014.01.012
  • Huijbregts, S., De Sonneville, L., Licht, R., Van Spronsen, F., & Sergeant, J. (2002). The neuropsychological profile of early and continuously treated phenylketonuria: Orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neuroscience & Biobehavioral Reviews, 26(6), 697–712. doi:10.1016/S0149-7634(02)00040-4
  • Huijbregts, S., De Sonneville, L., Van Spronsen, F., Berends, I., Licht, R., Verkerk, P., & Sergeant, J. (2003). Motor function under lower and higher controlled processing demands in early and continuously treated phenylketonuria. Neuropsychology, 17(3), 369.doi: 10.1037/0894-4105.17.3.369.
  • Huijbregts, S. C. J., De Sonneville, L. M. J., Licht, R., Van Spronsen, F. J., Verkerk, P. H., & Sergeant, J. A. (2002). Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia, 40(1), 7–15. doi:10.1016/S0028-3932(01)00078-1
  • Janos, A. L., Grange, D. K., Steiner, R. D., & White, D. A. (2012). Processing speed and executive abilities in children with phenylketonuria. Neuropsychology, 26(6), 735. doi:10.1037/a0029419
  • Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994). Motor sequence learning: A study with positron emission tomography. The Journal of Neuroscience, 14(6), 3775–3790. https://www.ncbi.nlm.nih.gov/pubmed/8207487
  • Jueptner, M, Stephan, K. M, Frith, C. D, Brooks, D. J, Frackowiak, R. S., & Passingham, R. E. (1997). Anatomy of motor learning. i. frontal cortex and attention to action. Journal of Neurophysiology, 77(3), 1313-1324.
  • Jueptner, M., & Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain, 121(8), 1437–1449. doi:10.1093/brain/121.8.1437
  • Kaufman, A. S., & Kaufman, N. L. (1990). K-BIT: Kaufman brief intelligence test. San Antonio, TX: Pearson.
  • Leuzzi, V., Pansini, M., Sechi, E., Chiarotti, F., Carducci, C., Levi, G., & Antonozzi, I. (2004). Executive function impairment in ET PKU subjects with normal mental development. Journal of Inherited Metabolic Disease, 27(2), 115–125. doi:10.1023/B:BOLI.0000028781.94251.1f
  • Malenka, R. C., Nestler, E. J., & Hyman, S. E. (2009). Chapter 6: Widely projecting systems: monoamines, acetylcholine, and orexin. In A. Sydor & B. Ry Eds., Molecular neuropharmacology: A foundation for clinical neuroscience (2nd ed., pp. 147–148, 154–157). New York, NY: McGraw-Hill Medical. ISBN 0-07-148127-3.
  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250. doi:10.1016/S0165-0173(99)00040-5
  • Molina-Luna, K., Pekanovic, A., Röhrich, S., Hertler, B., Schubring-Giese, M., Rioult-Pedotti, M. S., & Luft, A. R. (2009). Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. Plos One, 4(9), e7082. doi:10.1371/journal.pone.0007082
  • Mollica, A., Navarra, J., Fernández-Prieto, I., Olives, J., Tort, A., Valech, N., … Rami, L. (2015). Subtle visuomotor difficulties in preclinical Alzheimer’s disease. Journal of Neuropsychology. doi:10.1111/jnp.12079
  • Moyle, J., Fox, A., Arthur, M., Bynevelt, M., & Burnett, J. (2007). Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychology Review, 17(2), 91–101. doi:10.1007/s11065-007-9021-2
  • Pascual-Leone, A., Wassermann, E. M., Grafman, J., & Hallett, M. (1996). The role of the dorsolateral prefrontal cortex in implicit procedural learning. Experimental Brain Research, 107(3), 479–485. doi:10.1007/BF00230427
  • Pérez-Dueñas, B., Pujol, J., Soriano-Mas, C., Ortiz, H., Artuch, R., Vilaseca, M., & Campistol, J. (2006). Global and regional volume changes in the brains of patients with phenylketonuria. Neurology, 66(7), 1074–1078. doi:10.1212/01.wnl.0000204415.39853.4a
  • Pérez–Dueñas, B, Valls–Solé, J, Fernández–Alvarez, E, Conill, J, Vilaseca, M. A, Artuch, R, & Campistol, J. (2005). Characterization of tremor in phenylketonuric patients. Journal of Neurology, 252(11), 1328-1334. doi: 10.1007/s00415-005-0860-6
  • Pietz, J., Dunckelmann, R., Rupp, A., Meinck, H.-M., Schmidt, H., & Bremer, H. (1998). Neurological outcome in adult patients with ET phenylketonuria. European Journal of Pediatrics, 157(10), 824–830. doi:10.1007/s004310050945
  • Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y., & Pütz, B. (1998). Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. The Journal of Neuroscience, 18(5), 1827–1840.
  • Smith, I., Beasley, M., & Ades, A. (1990). Intelligence and quality of dietary treatment in phenylketonuria. Archives of Disease in Childhood, 65(5), 472–478. doi:10.1136/adc.65.5.472
  • Spreen, O. (1991). Controlled oral word association (word fluency). In E. Strauss, E.-M.-S. Sherman, & O. Spreen (Eds.), A compendium of neuropsychological tests. Administration, norms, and commentary (pp. 219–226). Oxford: Oxford University Press.
  • Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi: 10.1037/h0054651
  • Tarn, S. Y., & Roth, R. H. (1997). Mesoprefrontal dopaminergic neurons: Can tyrosine availability influence their functions? Biochemical Pharmacology, 53(4), 441–453. doi:10.1016/S0006-2952(96)00774-5
  • Ten Hoedt, A. E., De Sonneville, L. M., Francois, B., Ter Horst, N. M., Janssen, M. C., Rubio-Gozalbo, M. E., … Bosch, A. M. (2011). High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: A randomised, double-blind, placebo-controlled, crossover trial. Journal of Inherited Metabolic Disease, 34(1), 165–171. doi:10.1007/s10545-010-9253-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.