228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting conversion from mild cognitive impairment to Alzheimer’s disease with multimodal latent factors

&
Pages 316-335 | Received 02 Feb 2022, Accepted 16 Aug 2022, Published online: 29 Aug 2022

References

  • Alzheimer’s Association. (2021). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 17(3), 327–406. https://doi.org/10.1002/alz.12328
  • Barnes, D. E., Cenzer, I. S., Yaffe, K., Ritchie, C. S., & Lee, S. J. (2014). A point-based tool to predict conversion from mild cognitive impairment to probable Alzheimer’s disease. Alzheimer’s & Dementia, 10(6), 646–655. https://doi.org/10.1016/j.jalz.2013.12.014
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Blennow, K. (2004). Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRX, 1(2), 213–225. https://doi.org/10.1602/neurorx.1.2.213
  • Boggs, L. N., Fuson, K. S., Baez, M., Churgay, L., McClure, D., Becker, G., & May, P. C. (1996). Clusterin (Apo J) protects against in vitro amyloid-β(1–40) neurotoxicity. Journal of Neurochemistry, 67(3), 1324–1327. https://doi.org/10.1046/j.1471-4159.1996.67031324.x
  • Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., Nation, D. A., Libon, D. J., Au, R., Galasko, D., & Salmon, D. P., for the Alzheimer’s Disease Neuroimaging Initiative. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates, Journal of Alzheimer’s Disease, 42(1), 275–289. https://doi.org/10.3233/JAD-140276.
  • Browne, M., & Cudek, R. (1993). Alternative ways of assessing model fit. In K. Bollen & J. Long (Eds.), Testing structural equation models (pp. 136–162). Sage.
  • Calsolaro, V., & Edison, P. (2016). Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimer’s & Dementia, 12(6), 719–732. https://doi.org/10.1016/j.jalz.2016.02.010
  • Cattell, R. B., & Vogelmann, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors. Multivariate Behavioral Research, 12(3), 289–325. https://doi.org/10.1207/s15327906mbr1203_2
  • Chang, M., & Brainerd, C. J. (2021). Factor analyses of the ADNI neuropsychological battery: An examination of diagnostic and longitudinal invariance. Neuropsychology, 35(4), 434–450. https://doi.org/10.1037/neu0000736
  • Chapman, R. M., Mapstone, M., McCrary, J. W., Gardner, M. N., Porsteinsson, A., Sandoval, T. C., Guillily, M. D., DeGrush, E., & Reilly, L. A. (2011). Predicting conversion from mild cognitive impairment to Alzheimer’s disease using neuropsychological tests and multivariate methods. Journal of Clinical and Experimental Neuropsychology, 33(2), 187–199. https://doi.org/10.1080/13803395.2010.499356
  • Chapman, R. M., Mapstone, M., Porsteinsson, A. P., Gardner, M. N., McCrary, J. W., DeGrush, E., Reilly, L. A., Sandoval, T. C., & Guillily, M. D. (2010). Diagnosis of Alzheimer’s disease using neuropsychological testing improved by multivariate analyses. Journal of Clinical and Experimental Neuropsychology, 32(8), 793–808. https://doi.org/10.1080/13803390903540315
  • Chen, T., Zeng, D., & Wang, Y. (2015). Multiple kernel learning with random effects for predicting longitudinal outcomes and data integration. Biometrics, 71(4), 918–928. https://doi.org/10.1111/biom.12343
  • Cheng, B., Liu, M., Zhang, D., Munsell, B. C., & Shen, D. (2015). Domain transfer learning for MCI conversion prediction. IEEE Transactions on Biomedical Engineering, 62(7), 1805–1817. https://doi.org/10.1109/TBME.2015.2404809
  • Cohen, J. (1957). A factor-analytically based rationale for the wechsler adult intelligence scale. Journal of Consulting Psychology, 21(6), 451–457. https://doi.org/10.1037/h0044203
  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(7), 1–9. https://doi.org/10.7275/jyj1-4868
  • Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., Jones, R. N., Mukherjee, S., Curtis, S. M., Harvey, D., Weiner, M., & Mungas, D. (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior, 6(4), 502–516. https://doi.org/10.1007/s11682-012-9186-z
  • Cui, Y., Liu, B., Luo, S., Zhen, X., Fan, M., Liu, T., Zhu, W., Park, M., Jiang, T., & Jin, J. S., & the Alzheimer’s Disease Neuroimaging Initiative. (2011). Identification of conversion from mild cognitive impairment to Alzheimer’s disease using multivariate predictors. PLOS ONE, 6 (7), e21896. https://doi.org/10.1371/journal.pone.0021896
  • Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.-O., Chupin, M., Benali, H., & Colliot, O. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage, 56(2), 766–781. https://doi.org/10.1016/j.neuroimage.2010.06.013
  • Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322.e19–2322.e27. https://doi.org/10.1016/j.neurobiolaging.2010.05.023
  • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics, 44(3), 837–845. https://doi.org/10.2307/2531595
  • Deming, Y., Xia, J., Cai, Y., Lord, J., Holmans, P., Bertelsen, S., Holtzman, D., Morris, J. C., Bales, K., Pickering, E. H., Kauwe, J., Goate, A., & Cruchaga, C. (2016). A potential endophenotype for Alzheimer’s disease: Cerebrospinal fluid clusterin. Neurobiology of Aging, 37(208), e1–208.e9. https://doi.org/10.1016/j.neurobiolaging.2015.09.009
  • Devanand, D. P., Liu, X., Brown, P. J., Huey, E. D., Stern, Y., & Pelton, G. H. (2012). A two-study comparison of clinical and MRI markers of transition from mild cognitive impairment to Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2012, e483469. https://doi.org/10.1155/2012/483469
  • Eckerström, C., Olsson, E., Bjerke, M., Malmgren, H., Edman, Å., Wallin, A., & Nordlund, A. (2013). A combination of neuropsychological, neuroimaging, and cerebrospinal Fluid markers predicts conversion from mild cognitive iImpairment to dementia. Journal of Alzheimer’s Disease, 36(3), 421–431. https://doi.org/10.3233/JAD-122440
  • Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack, C. R., Feldman, H. H., Bokde, A. L. W., Alexander, G. E., Scheltens, P., Vellas, B., Dubois, B., Weiner, M., & Hampel, H., & North American Alzheimer’s Disease Neuroimaging Initiative. (2012). Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging, 33(7), 1203–1214.e2. https://doi.org/10.1016/j.neurobiolaging.2010.10.019
  • Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., Brewer, J. B., & Dale, A. M., for the Alzheimer’s Disease Neuroimaging Initiative. (2010). CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. Journal of Neuroscience, 30(6), 2088–2101. https://doi.org/10.1523/JNEUROSCI.3785-09.2010
  • Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., Curtis, S. M., Mungas, D., & Crane, P. K. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6(4), 517–527. https://doi.org/10.1007/s11682-012-9176-1
  • Giraldo, D. L., Sijbers, J., & Romero, E. (2017). Quantifying cognition and behavior in normal aging, mild cognitive impairment, and Alzheimer’s disease. 13th International Conference on Medical Information Processing and Analysis, 10572, 105720H. https://doi.org/10.1117/12.2287036
  • Gomar, J. J., Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., Goldberg, T. E., & Initiative, A. D. N. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Archives of General Psychiatry, 68(9), 961–969. https://doi.org/10.1001/archgenpsychiatry.2011.96
  • Gomar, J. J., Conejero-Goldberg, C., Davies, P., & Goldberg, T. E. (2014). Extension and refinement of the predictive value of different classes of markers in ADNI: Four-year follow-up data. Alzheimer’s & Dementia, 10(6), 704–712. https://doi.org/10.1016/j.jalz.2013.11.009
  • Goodglass, H., Kaplan, E., & Weintraub, S. (1983). Boston naming test. Lea & Febiger.
  • Hampel, H., Teipel, S. J., Padberg, F., Haslinger, A., Riemenschneider, M., Schwarz, M. J., Kötter, H. U., Scheloske, M., Buch, K., Stübner, S., Dukoff, R., Lasser, R., Müller, N., Sunderland, T., Rapoport, S. I., & Möller, H.-J. (1999). Discriminant power of combined cerebrospinal fluid τ protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer’s disease. Brain Research, 823(1), 104–112. https://doi.org/10.1016/S0006-8993(99)01146-4
  • Hampton, O. L., Mukherjee, S., Properzi, M. J., Schultz, A. P., Crane, P. K., Gibbons, L. E., Hohman, T. J., Maruff, P. T., Lim, Y. Y., Amariglio, R., Papp, K. V., Johnson, K. A., Rentz, D., Sperling, R. A., & Buckley, R. F. (2020). Harmonizing the preclinical Alzheimer cognitive composite for multi-cohort studies. Alzheimer’s & Dementia, 16(S9), e047423. https://doi.org/10.1002/alz.047423
  • Harrison, J. E., Buxton, P., Husain, M., & Wise, R. (2000). Short test of semantic and phonological fluency: Normal performance, validity and test-retest reliability. British Journal of Clinical Psychology, 39(2), 181–191. https://doi.org/10.1348/014466500163202
  • Heneka, M. T., Carson, M. J., Khoury, J. E., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., & Kummer, M. P. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
  • Hershberger, S. L. (2005). Factor score estimation. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 726). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470013192.bsa726
  • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
  • Hu, W. T., Watts, K. D., Tailor, P., Nguyen, T. P., Howell, J. C., Lee, R. C., Seyfried, N. T., Gearing, M., Hales, C. M., Levey, A. I., Lah, J. J., & Lee, E. K., for the Alzheimer’s Disease Neuro-Imaging Initiative. (2016). CSF complement 3 and factor H are staging biomarkers in Alzheimer’s disease, Acta Neuropathologica Communications, 4(1), 14. https://doi.org/10.1186/s40478-016-0277-8
  • Izquierdo, I., & Medina, J. H. (1993). Role of the amygdala, hippocampus and entorhinal cortex in memory consolidation and expression. Brazilian Journal of Medical and Biological Research, 26(6), 573–589.
  • Jack, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M., … Silverberg, N. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535–562. https://doi.org/10.1016/j.jalz.2018.02.018
  • Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4422(09)70299-6
  • Jutten, R. J., Sikkes, S. A. M., Amariglio, R. E., Buckley, R. F., Properzi, M. J., Marshall, G. A., Rentz, D. M., Johnson, K. A., Teunissen, C. E., Van Berckel, B. N. M., Van der Flier, W. M., Scheltens, P., Sperling, R. A., & Papp, K. V., for the Alzheimer Disease Neuroimaging Initiative, & National Alzheimer’s Coordinating Center, the Harvard Aging Brain Study, and the Alzheimer Dementia Cohort. (2021). Identifying sensitive measures of cognitive decline at different clinical stages of Alzheimer’s disease, Journal of the International Neuropsychological Society, 27(5), 426–438. https://doi.org/10.1017/S1355617720000934
  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. https://doi.org/10.1007/BF02289233
  • Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. https://doi.org/10.1007/BF02291817
  • Kaiser, H. F., & Rice, J. (1974). Little jiffy, mark IV. Educational and Psychological Measurement, 34(1), 111–117. https://doi.org/10.1177/001316447403400115
  • Kaur, G., & Levy, E. (2012). Cystatin C in Alzheimer’s disease. Frontiers in Molecular Neuroscience, 5, 79. https://doi.org/10.3389/fnmol.2012.00079
  • Khan, W., Aguilar, C., Kiddle, S. J., Doyle, O., Thambisetty, M., Muehlboeck, S., Sattlecker, M., Newhouse, S., Lovestone, S., Dobson, R., Giampietro, V., Westman, E., Simmons, A., & Initiative, A. D. N. (2015). A subset of cerebrospinal fluid proteins from a multi-analyte panel associated with brain atrophy, disease classification and prediction in Alzheimer’s disease. PLOS ONE, 10(8), e0134368. https://doi.org/10.1371/journal.pone.0134368
  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05
  • Kumar, R. G., Diamond, M. L., Boles, J. A., Berger, R. P., Tisherman, S. A., Kochanek, P. M., & Wagner, A. K. (2015). Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain, Behavior, and Immunity, 45, 253–262. https://doi.org/10.1016/j.bbi.2014.12.021
  • Lai, K., & Green, S. B. (2016). The problem with having two watches: Assessment of fit when RMSEA and CFI disagree. Multivariate Behavioral Research, 51(2–3), 220–239. https://doi.org/10.1080/00273171.2015.1134306
  • Landi, S. M., Viswanathan, P., Serene, S., & Freiwald, W. A. (2021). A fast link between face perception and memory in the temporal pole. Science, 373(6554), 581–585. https://doi.org/10.1126/science.abi6671
  • Li, K., Chan, W., Doody, R. S., Quinn, J., & Luo, S. (2017). Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data. Journal of Alzheimer’s Disease, 58(2), 361–371. https://doi.org/10.3233/JAD-161201
  • Martens, L. H., Zhang, J., Barmada, S. J., Zhou, P., Kamiya, S., Sun, B., Min, S.-W., Gan, L., Finkbeiner, S., Huang, E. J., & Farese, R. V. (2012). Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. The Journal of Clinical Investigation, 122(11), 3955–3959. https://doi.org/10.1172/JCI63113
  • Mattsson, N., Insel, P., Nosheny, R., Trojanowski, J. Q., Shaw, L. M., Jack, C. R., Tosun, D., & Weiner, M. (2014). Effects of cerebrospinal fluid proteins on brain atrophy rates in cognitively healthy older adults. Neurobiology of Aging, 35(3), 614–622. https://doi.org/10.1016/j.neurobiolaging.2013.08.027
  • Miners, J. S., Clarke, P., & Love, S. (2017). Clusterin levels are increased in A lzheimer’s disease and influence the regional distribution of Aβ. Brain Pathology, 27(3), 305–313. https://doi.org/10.1111/bpa.12392
  • Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia – Meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265. https://doi.org/10.1111/j.1600-0447.2008.01326.x
  • Moradi, E., Pepe, A., Gaser, C., Huttunen, H., & Tohka, J. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage, 104, 398–412. https://doi.org/10.1016/j.neuroimage.2014.10.002
  • Morenas-Rodríguez, E., Cervera-Carles, L., Vilaplana, E., Alcolea, D., Carmona-Iragui, M., Dols-Icardo, O., Ribosa-Nogué, R., Muñoz-Llahuna, L., Sala, I., Belén Sánchez-Saudinós, M., Blesa, R., Clarimón, J., Fortea, J., & Lleó, A. (2016). Progranulin protein levels in cerebrospinal fluid in primary neurodegenerative dementias. Journal of Alzheimer’s Disease, 50(2), 539–546. https://doi.org/10.3233/JAD-150746
  • Morris, J. C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 2412–2414. https://doi.org/10.1212/WNL.43.11.2412-a
  • Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia, 1(1), 55–66. https://doi.org/10.1016/j.jalz.2005.06.003
  • Park, L. Q., Gross, A. L., McLaren, D. G., Pa, J., Johnson, J. K., Mitchell, M., & Manly, J. J., Alzheimer’s Disease Neuroimaging Initiative. (2012). Confirmatory factor analysis of the ADNI neuropsychological battery. Brain Imaging and Behavior, 6(4), 528–539. https://doi.org/10.1007/s11682-012-9190-3
  • Paterson, R. W., Bartlett, J. W., Blennow, K., Fox, N. C., Shaw, L. M., Trojanowski, J. Q., Zetterberg, H., & Schott, J. M. (2014). Cerebrospinal fluid markers including trefoil factor 3 are associated with neurodegeneration in amyloid-positive individuals. Translational Psychiatry, 4(7), e419–e419. https://doi.org/10.1038/tp.2014.58
  • Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x
  • Petersen, R. C. (2011). Mild cognitive impairment. The New England Journal of Medicine, 364(23), 2227–2234. https://doi.org/10.1056/NEJMcp0910237
  • Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Jr., Chance, J. M., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37(3), 323–329. https://doi.org/10.1093/geronj/37.3.323
  • Pogue, A. I., Li, Y. Y., Cui, J.-G., Zhao, Y., Kruck, T. P. A., Percy, M. E., Tarr, M. A., & Lukiw, W. J. (2009). Characterization of an NF-κB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. Journal of Inorganic Biochemistry, 103(11), 1591–1595. https://doi.org/10.1016/j.jinorgbio.2009.05.012
  • Portelius, E., Zetterberg, H., Skillbäck, T., Törnqvist, U., Andreasson, U., Trojanowski, J. Q., Weiner, M. W., Shaw, L. M., & Mattsson, N., for the Alzheimer’s Disease Neuroimaging Initiative. (2015). Cerebrospinal fluid neurogranin: Relation to cognition and neurodegeneration in Alzheimer’s disease, Brain, 138(11), 3373–3385. https://doi.org/10.1093/brain/awv267
  • R Core Team. (2019). R: A language and environment for statistical computing. https://www.R-project.org/
  • Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation (Vol. 4). Reitan Neuropsychology.
  • Revelle, W. (2016). Psych: Procedures for personality and psychological research (Version 1.6. 12)[Computer software]. Evanston, IL: Northwestern University, 30, 2017.
  • Rey, A. L. (1964). Presses Universitaires de France. Presses Universitaires de France.
  • Richard, E., Schmand, B. A., Eikelenboom, P., & Van Gool, W. A. (2013). MRI and cerebrospinal fluid biomarkers for predicting progression to Alzheimer’s disease in patients with mild cognitive impairment: A diagnostic accuracy study. BMJ Open, 3(6), e002541. https://doi.org/10.1136/bmjopen-2012-002541
  • Risacher, S. L., Saykin, A. J., West, J. D., Shen, L., Firpi, H. A., & McDonald, B. C. (2009). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Current Alzheimer Research, 6(4), 347–361. https://doi.org/10.2174/156720509788929273
  • Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. https://doi.org/10.1186/1471-2105-12-77
  • Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. The American Journal of Psychiatry, 141(11), 1356–1364. https://doi.org/10.1176/ajp.141.11.1356
  • Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
  • Rushton, J. P., Brainerd, C. J., & Pressley, M. (1983). Behavioral development and construct validity: The principle of aggregation. Psychological Bulletin, 94(1), 18–38. https://doi.org/10.1037/0033-2909.94.1.18
  • Sando, S. B., Melquist, S., Cannon, A., Hutton, M., Sletvold, O., Saltvedt, I., White, L. R., Lydersen, S., & Aasly, J. (2008). Risk-reducing effect of education in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 23(11), 1156–1162. https://doi.org/10.1002/gps.2043
  • Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K. R., Calhoun, V. D., Coleman, R. E., & Doraiswamy, P. M. (2013). Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR Imaging, and PET biomarkers. Radiology, 266(2), 583–591. https://doi.org/10.1148/radiol.12120010
  • Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., Blennow, K., Soares, H., Simon, A., Lewczuk, P., Dean, R., Siemers, E., Potter, W., Lee, V. M.-Y., & Trojanowski, J. Q. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403–413. https://doi.org/10.1002/ana.21610
  • Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus, 19(11), 1055–1064. https://doi.org/10.1002/hipo.20573
  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11(11), 1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6
  • Suárez‐Calvet, M., Kleinberger, G., Araque Caballero, M. Á., Brendel, M., Rominger, A., Alcolea, D., Fortea, J., Lleó, A., Blesa, R., Gispert, J. D., Sánchez‐Valle, R., Antonell, A., Rami, L., Molinuevo, J. L., Brosseron, F., Traschütz, A., Heneka, M. T., Struyfs, H., Engelborghs, S., … Haass, C. (2016). STREM 2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Molecular Medicine, 8(5), 466–476. https://doi.org/10.15252/emmm.201506123
  • Sun, X., & Xu, W. (2014). Fast implementation of DeLong’s algorithm for comparing the areas under correlated receiver operating characteristic curves. IEEE Signal Processing Letters, 21(11), 1389–1393. https://doi.org/10.1109/LSP.2014.2337313
  • Toledo, J. B., Korff, A., Shaw, L. M., Trojanowski, J. Q., & Zhang, J., & the Alzheimer’s Disease Neuroimaging Initiative. (2014). Low levels of cerebrospinal fluid complement 3 and factor H predict faster cognitive decline in mild cognitive impairment. Alzheimer’s Research & Therapy, 6 (3), 36. https://doi.org/10.1186/alzrt266
  • Wechsler, D. (1987). Wechsler memory scale-revised. Psychological Corporation.
  • Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Morris, J. C., Petersen, R. C., Saykin, A. J., Shaw, L. M., Toga, A. W., & Trojanowski, J. Q. (2017). Recent publications from the Alzheimer’s Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimer’s & Dementia, 13(4), e1–e85. https://doi.org/10.1016/j.jalz.2016.11.007
  • Welge, V., Fiege, O., Lewczuk, P., Mollenhauer, B., Esselmann, H., Klafki, H.-W., Wolf, S., Trenkwalder, C., Otto, M., Kornhuber, J., Wiltfang, J., & Bibl, M. (2009). Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer’s disease. Journal of Neural Transmission, 116(2), 203–212. https://doi.org/10.1007/s00702-008-0177-6
  • Whitwell, J. L., Crum, W. R., Watt, H. C., & Fox, N. C. (2001). Normalization of cerebral volumes by use of intracranial volume: Implications for longitudinal quantitative MR imaging. AJNR. American Journal of Neuroradiology, 22(8), 1483–1489.
  • Wilhalme, H., Goukasian, N., De Leon, F., He, A., Hwang, K. S., Woo, E., Elashoff, D., Zhou, Y., Ringman, J. M., & Apostolova, L. G. (2017). A comparison of theoretical and statistically derived indices for predicting cognitive decline. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 6, 171–181. https://doi.org/10.1016/j.dadm.2016.10.002
  • Williams, B., Onsman, A., & Brown, T. (2010). Exploratory factor analysis: A five-step guide for novices. Australasian Journal of Paramedicine, 8(3), 1–13. https://doi.org/10.33151/ajp.8.3.93
  • Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., DiBernardo, A., & Narayan, V. A., for the Alzheimer’s Disease Neuroimaging Initiative. (2012). Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology, 12(1), 46. https://doi.org/10.1186/1471-2377-12-46
  • Yong, A. G., & Pearce, S. (2013). A beginner’s guide to factor analysis: Focusing on exploratory factor analysis. Tutorials in Quantitative Methods for Psychology, 9(2), 79–94. https://doi.org/10.20982/tqmp.09.2.p079
  • Zhang, D., Shen, D., & Initiative, A. D. N. (2012). Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLOS ONE, 7(3), e33182. https://doi.org/10.1371/journal.pone.0033182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.