Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 112, 2006 - Issue 4-5
147
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Monocyte Chemoattractant Protein-1 – a major contributor to the inflammatory process associated with diabetes

& , PhD.
Pages 239-244 | Received 28 Aug 2006, Accepted 27 Sep 2006, Published online: 10 Oct 2008

References

  • Asakawa H, Miyagawa J, Hanafusa T, Kuwajima M, Matsuzawa Y. High glucose and hyperosmolarity increase secretion of interleukin-1 beta in cultured human aortic endothelial cells. J Diabetic Complications 1997; 11: 176–179
  • Beckman J A, Creager M A, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287: 2570–2581
  • Brownlee M. Biochemistry and molecular cell biology of diabetes complications. Nature 2001; 414: 813–820
  • Charo I F, Taubman M B. Chemokines in the pathogenesis of vascular disease. Circ Res 2004; 95(9)858–866
  • Chen S, Mukherjee S, Chakraborty C, Chakraborty S. High glucoseinduced, endothelin-dependent fibronectin synthesis is mediated via NF-κB and AP-1. Am J Physiol 2003; 284: C263–C272
  • Cipollone F, Iezzi A, Fazia M, Zucchelli M, Pini B, Cuccurullo C, De Cesare D, De Blasis G, Muraro R, Bei R, Chiarelli F, Schmidt A M, Cuccurullo F, Mezzeti A. The receptor RAGE as a progression factor amplifying arachidonate- dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 2003; 108: 1070–1077
  • Dawson T C, Kuziel W A, Osahar T A, Maeda N. Absence of CC chemokine receptor-2 reduces atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 1999; 143: 205–211
  • Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329: 977–986
  • Dragomir E, Tarcol M, Manduteanu I, Voinea M, Simionescu M. Aspirin and PPAR-α activators inhibit MCP-1 expression induced by high glucose concentration in human endothelial cells. Vascul Pharmacol 2006; 44(6)440–449
  • Feng L, Matsumoto C, Schwartz A, Schmidt A M, Stern D M, Spellman J P. Chronic Vascular Inflammation in Patients With Type 2 Diabetes. Diabetes Care 2005; 28: 379–384
  • Getz G S. Report on the workshop on diabetes and mechanisms of atherogenesis, Sept 17th and 18th, 1992, Bethesda, Maryland. Arterioscler Thromb 1993; 13: 459–464
  • Gibbons G H, Dzau V J. The emerging concept of vascular remodeling. N Eng J Med 1994; 330: 1431–1438
  • Golovchenko I, Goalstone M L, Watson P, Brownle M, Draznin B. Hyperinsulinemia enhances transcriptional activity of nuclear factor-κB induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells. Circ Res 2000; 87: 722–724
  • Graier W F, Grubenthal I, Dittrich P, Wascher T C, Kostner G M. Intracellular mechanism of high D-glucose-induced modulation of vascular cell proliferation. Eur J Pharmacol 1995; 294: 221–229
  • Gu L, Okada Y, Clinton S K, Gerard C, Sukhova G K, Libby P, Rollins B J. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998; 2: 275–281
  • Hiroshi T, Taniguchi T, Takahashi A, Ishikawa Y, Yokoyama M. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Biophys Res Comm 2003; 305: 122–128
  • Ho F M, Liu S H, Liau C S, Huang P J, Shiah S G, Lin-Shiau S Y. Nitric oxide prevents apoptosis of human endothelial cells from high glucose exposure during early stage. J Cell Biochem 1999; 75: 258–263
  • Hsueh W A, Law R E. Diabetes is a vascular disease. J Investig Med 1998; 46: 387–390
  • Hunjoo H, Mi R Y, Yoon J C, Masanori K, Hi B L. Role of high glucose-induced nuclear factor-B activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol 2002; 13: 894–902
  • Ihma C G, Parka J K, Honga S P, Leea T W, Chob B S, Kima M J, Chac D R, Hunjoo H. A high glucose concentration stimulates the expression of monocyte chemotactic peptide 1 in human mesangial. Cells Nephron 1998; 79: 33–37
  • Jiang Y, Beller D I, Frendl G, Graves D T. Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol 1992; 148: 2423–2428
  • Kannel W B, McGee D L. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 1979; 241: 2035–2038
  • Kim J A, Berliner J A, Natarajan R D, Nadler J L. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes 1994; 43: 1103–1107
  • Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 1999; 48(5)937–942
  • Li L, Sawamura T, Renier G. Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 2003; 52: 1843–1850
  • Libby P. Changing concepts of atherosclerosis. J Intern Med 2000; 247: 349–358
  • Lo I C, Jun-Ming S, Meei J J. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci 2005; 12: 377–388
  • Lu B, Rutledge B J, Gu L, Fiorillo J, Lukacs N W, Kunkel S L, North R, Gerard C, Rollins B J. Abnormalities in monocyte recruitment and cytokine expression in MCP-1-deficient mice. J Exp Med 1998; 187: 601–608
  • Manduteanu I, Dragomir E, Antohe F, Radulescu L, Simionescu M. Effect of enoxaparin on high glucose induced activation of endothelial cells. Eur J Pharmacol 2003; 477(3)269–276
  • Mine S, Okada Y, Tanikawa T, Kawahara C, Tabata T, Tanaka Y. Increased expression levels of monocyte CCR2 and monocyte chemoattractant protein-1 in patients with diabetes mellitus. Biochem Biophys Res Comm 2006; 344(3)780–755
  • Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C, Remuzzi G. Leukocyte- endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion. J Clin Invest 1998; 101: 1905–1915
  • Morishita R, Nakamura S, Nakamura Y, Aoki M, Moriguchi A, Kida I, Yo Y, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Potential role of an endothelium-specific growth factor, hepatocyte growth factor, on endothelial damage in diabetes. Diabetes 1997; 46: 138–142
  • Nathan D M. Some answers, more controversy, from UKPDS. Lancet 1998; 352: 832–833
  • Nelken N A, Coughlin S R, Gordon D, Wilcox J N. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 1991; 88: 1121–1127
  • Nishikawa T, Edelstein D, Du X L, Yamagishi S, Matsumura T, Kaneda Y, Yorek M A, Beebe D, Oates P J, Hammes H P, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779)787–790
  • Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 1995; 9: 484–496
  • Onuffer J J, Horuk R. Chemokines, chemokine receptors and small molecule antagonists: recent developments. Trends Pharmacol Sci 2002; 23: 459–467
  • Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev 1987; 3(2)463–524
  • Ramana K V, Friedrich B, Bhatnagar A, Srivastava S K. Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells. FASEB J 2003; 17: 315–317
  • Romeo G, Liu W H, Asnaghi V, Kern T S, Lorenzi M. Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 2002; 51: 2241–2248
  • Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18: 217–242
  • Schecter A D, Rollins B J, Zhang Y J, Charo I F, Fallon J T, Rossikhina M, Giesen P L, Nemerson Y, Taubman M B. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J Biol Chem 1997; 272: 28568–28573
  • Sell H, Dietze-Schroeder D, Kaiser U, Eckel J. MCP-1 is a potential player in the negative crosstalk between adipose tissue and skeletal muscle. Endocrinology 2006; 147: 2458–2467
  • Shanmugam N, Reddy M A, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 2003; 52: 1256–1264
  • Sheetz M J, King G L. Molecular understanding of hyperglycemia's adverse effects for diabetes complications. JAMA 2002; 288: 2579–2588
  • Shin W S, Szuba A, Rockson S G. The role of chemokines in human cardiovascular pathology: enhanced biological insights. Atherosclerosis 2002; 160: 91–102
  • Simionescu M, Popov D, Sima A, Hasu M, Costache G, Faitar S, Vulpanovici A, Stancu C, Stern D, Simionescu N. Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model. The hyperlipemic-hyperglycemic hamster. Am J Pathol 1996; 148(3)997–1014
  • Sowers J R, Stump C S. Insights into the biology of diabetic vascular disease: what's new?. Am J Hypertens 2004; 17(11 Pt 2)2S–6S
  • Suzuki L A, Poot M, Gerrity R G, Bornfeldt K E. Diabetes accelerates smooth muscle accumulation in lesions of atherosclerosis. Diabetes 2001; 50: 851–860
  • Taniyama Y, Griendling K K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42(6)1075–1081
  • Temaru R, Urakaze M, Satou A, Yamazaki K, Nakamura N, Kobayashi M. High glucose enhances the gene expression of interleukin-8 in human endothelial cells, but not in smooth muscle cells: possible role of interleukin-8 in diabetic macroangiopathy. Diabetologia 1997; 40: 610–613
  • Terkeltaub R, Boisvert W A, Curtiss L K. Chemokines and atherosclerosis. Curr Opin Lipidol 1998; 9: 397–405
  • Turner R C, Millns H, Neil H A, Stratton I M, Manley S E, Matthews D R, Holman R R. Risk factors for coronary artery disease in noninsulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study. Br Med J 1998; 316: 823–828
  • Weber C, Schober A, Zernecke A, Chemokines. Key Regulators of Mononuclear Cell Recruitment in Atherosclerotic Vascular Disease. Arterioscler Thromb Vasc Biol 2004; 24: 1997–2008
  • Wiener O D, Neilsen P O, Prestwich G D, Kirschner M W, Cantley L C, Bourne H R. PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 2002; 4: 509–512
  • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne H R. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 2003; 114: 201–214
  • Yamamoto T, Eckes B, Krieg T. High expression and autoinduction of monocyte chemoattractant protein-1 in scleroderma fibroblasts. Eur J Immunol 2001; 31: 2936–2941
  • Yamamoto T, Eckes B, Mauch C, Hartmann K, Krieg T. Monocyte chemoattractant protein-1 enhances gene expression and synthesis of matrix metalloproteinase-1 in human fibroblasts by an autocrine IL-1a loop. J Immunol 2000; 164: 6174–6179
  • Yerneni K KV, Bai W, Khan B V, Medford R, Natarajan R. Hyperglycemia induced activation of nuclear transcription factor κB in vascular smooth muscle cells. Diabetes 1999; 48: 855–864
  • Yla-Herttuala S, Lipton B A, Rosenfeld M E, Sarkioja T, Yoshimura T, Leonard E J, Witztum J L, Steinberg D. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA 1991; 88: 5252–5256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.