Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 126, 2020 - Issue 2
228
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Natural products for the management of the hepatitis C virus: a biochemical review

&
Pages 116-128 | Received 06 May 2018, Accepted 06 Jul 2018, Published online: 29 Sep 2018

References

  • Abdel-Moneim, A., et al., 2013. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI journal, 12, 943–955.
  • Ahmed-Belkacem, A., et al., 2010. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology, 138 (3), 1112–1122.
  • Bachmetov, L., et al., 2012. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. Journal of viral hepatitis, 19 (2), e81–e88.
  • Bagchi, D., et al., 2014. Free radical scavenging, antioxidant and cancer chemoprevention by grape seed proanthocyanidin: an overview. Mutation research, 768, 69–73.
  • Banerjee, A., Ray, R.B., and Ray, R., 2010. Oncogenic potential of hepatitis C virus proteins. Viruses, 2 (9), 2108–2133.
  • Barakat, E.M.F., El Wakeel, L.M., and Hagag, R.S., 2013. Effects of Nigella sativa on outcome of Hepatitis C in Egypt. World journal of gastroenterology, 19 (16), 2529–2536.
  • Bartenschlager, R., et al., 1993. Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. Journal of virology, 67 (7), 3835–3844.
  • Batista, M.N., et al., 2015. Caffeine inhibits hepatitis C virus replication in vitro. Archives of virology, 160 (2), 399–407.
  • Beaulieu, P.L., 2007. Non-nucleoside inhibitors of the HCV NS5B polymerase: progress in the discovery and development of novel agents for the treatment of HCV infections. Current opinion in investigational drugs, 8 (8), 614–634.
  • Bentivegna, S.S., and Whitney, K.M., 2002. Subchronic 3-month oral toxicity study of grape seed and grape skin extracts. Food and chemical toxicology, 40 (12), 1731–1743.
  • Biermer, M., et al., 2012. High dose silibinin rescue treatment for HCV-infected patients showing suboptimal virologic response to standard combination therapy. Journal of viral hepatitis, 19 (8), 547–553.
  • Bokesch, H.R., et al., 2003. Potent novel anti-HIV protein from the cultured cyanobacterium Scytonema Varium. Biochemistry, 42 (9), 2578–2584.
  • Butcher, S.J., et al., 2001. A mechanism for initiating RNA-dependent RNA polymerization. Nature, 410 (6825), 235–240.
  • Buzzelli, G., et al., 1993. A pilot study on the liver protective effect of silybin-phosphatidylcholine complex (IdB1016) in chronic active hepatitis. International journal of clinical pharmacology, therapy, and toxicology, 31 (9), 456–460.
  • Calland, N., et al., 2015. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. Journal of virology, 89 (19), 10053–10063.
  • Calland, N., et al., 2012. (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 55 (3), 720–729.
  • Chen, C., et al., 2012. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Archives of virology, 157 (7), 1301–1312.
  • Chen, S.R., et al., 2016a. In vitro study on anti-hepatitis C virus activity of Spatholobus suberectus Dunn. Molecules, 21 (10), 1367.
  • Chen, W.C., et al., 2016b. Grape seed extract attenuates hepatitis C virus replication and virus-induced inflammation. Frontiers in pharmacology, 7, 490.
  • Choi, M., et al., 2014. Mangosteen xanthones suppress hepatitis C virus genome replication. Virus genes, 49 (2), 208–222.
  • Ciesek, S., et al., 2011. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 54 (6), 1947–1955.
  • Costentin, C.E., et al., 2011. Association of caffeine intake and histological features of chronic hepatitis C. Journal of hepatology, 54 (6), 1123–1129.
  • Elsebai, M.F., et al., 2015. Pan-genotypic hepatitis C virus inhibition by natural products derived from the wild Egyptian Artichoke. Journal of virology, 90 (4), 1918–1930.
  • Elsebai, M.F., et al., 2016. The wild Egyptian artichoke as a promising functional food for the treatment of hepatitis C virus as revealed via UPLC-MS and clinical trials. Food & function, 7 (7), 3006–3016.
  • Fan, J., et al., 2007. Saikosaponin-d attenuates the development of liver fibrosis by preventing hepatocyte injury. Biochemistry and cell biology, 85 (2), 189–195.
  • Ferenci, P., et al., 2008. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology, 135 (5), 1561–1567.
  • Fried, M.W., et al., 2012. Effect of silymarin (milk thistle) on liver disease in patients with chronic hepatitis C unsuccessfully treated with interferon therapy: a randomized controlled trial. JAMA, 308 (3), 274–282.
  • Galani, T.B.R., et al., 2014. Anti-hepatitis C virus activity of crude extract and fractions of Entada africana in genotype 1b replicon systems. The American journal of Chinese medicine, 42 (4), 853–868.
  • Galani, B.R., et al., 2015. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Frontiers in microbiology, 6, 488.
  • Galani, B.R., et al., 2016. Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro. Archives of virology, 161 (5), 1169–1181.
  • Ganta, K.K., et al., 2017. Anti-HCV activity from semi-purified methanolic root extracts of Valeriana wallichii. Phytotherapy research, 31 (3), 433–440.
  • Gao, M., et al., 2010. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature, 465 (7294), 96–100.
  • Glaser, J., et al., 2015. Antileishmanial and cytotoxic compounds from Valeriana wallichii and identification of a novel nepetolactone derivative. Molecules, 20 (4), 5740–5753.
  • Goldwasser, J., et al., 2011. Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. Journal of hepatology, 55, 963–971.
  • Grove, J., et al., 2008. Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies. Journal of virology, 82 (24), 12020–12029.
  • Hassan, S.T.S., Berchová-Bímová, K., and Petráš, J., 2016. Plumbagin, a plant-derived compound, exhibits antifungal combinatory effect with amphotericin B against Candida Albicans clinical isolates and anti-hepatitis C virus activity. Phytotherapy research, 30 (9), 1487–1492.
  • Hawas, U.W., et al., 2016. Different culture metabolites of the Red Sea fungus Fusarium equiseti optimize the inhibition of hepatitis C virus NS3/4A protease (HCV PR). Marine drugs, 14, 190.
  • Hawke, R.L., et al., 2010. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. Journal of clinical pharmacology, 50 (4), 434–449.
  • Hermawan, I., et al., 2017. Four aromatic sulfates with an inhibitory effect against HCV NS3 helicase from the crinoid Alloeocomatella polycladia. Marine drugs, 15 (4), 117.
  • Hsu, W.-C., et al., 2015. Limonium sinense and gallic acid suppress hepatitis C virus infection by blocking early viral entry. Antiviral research, 118, 139–147.
  • Hu, J.F., et al., 2007. Anti-HCV bioactivity of pseudoguaianolides from Parthenium hispitum. Journal of natural products, 70 (4), 604–607.
  • Huber, R., et al., 2009. Artichoke leave extract for chronic hepatitis C - a pilot study. Phytomedicine: international journal of phytotherapy and phytopharmacology, 16 (9), 801–804.
  • Inoue, M., et al., 2009. Effect of coffee and green tea consumption on the risk of liver cancer: cohort analysis by hepatitis virus infection status. Cancer epidemiology, biomarkers & prevention, 18 (6), 1746–1753.
  • Ishida, Y., Takeshita, M., and Kataoka, H., 2014. Functional foods effective for hepatitis C: identification of oligomeric proanthocyanidin and its action mechanism. World journal of hepatology, 6 (12), 870–879.
  • Jopling, C.L., et al., 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309 (5740), 1577–1581.
  • Khachatoorian, R., et al., 2012. Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology, 433 (2), 346–355.
  • Kim, D.W., et al., 1995. C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochemical and biophysical research communications, 215 (1), 160–166.
  • Kurowska, E.M., et al., 2000. Hypocholesterolemic effects of dietary citrus juices in rabbits. Nutrition research, 20 (1), 121–129.
  • Landolfi, R., Mower, R.L., and Steiner, M., 1984. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochemical pharmacology, 33 (9), 1525–1530.
  • Lehmann, E., et al., 2010. The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology, 51 (2), 398–404.
  • Li, S., et al., 2010. Procyanidin B1 purified from Cinnamomi cortex suppresses hepatitis C virus replication. Antiviral chemistry & chemotherapy, 20 (6), 239–248.
  • Lin, L.T., et al., 2015. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. Journal of hepatology, 62 (3), 541–548.
  • Liu, J., et al., 2003. Medicinal herbs for hepatitis C virus infection: a Cochrane hepatobiliary systematic review of randomized trials. The American journal of gastroenterology, 98 (3), 538–544.
  • Loguercio, C., and Festi, D., 2011. Silybin and the liver: from basic research to clinical practice. World journal of gastroenterology, 17 (18), 2201–2288.
  • Lok, A.S., et al., 2012. Preliminary study of two antiviral agents for hepatitis C genotype 1. The New England journal of medicine, 366 (3), 216–224.
  • Ma, C.M., et al., 2009. Triterpenes from Cynomorium songaricium—analysis of HCV protease inhibitory activity, quantification, and content change under the influence of heating. Journal of natural medicines, 63 (1), 9–14.
  • Manvar, D., et al., 2012. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. Journal of ethnopharmacology, 144 (3), 545–554.
  • Mao, Y.M., et al., 2004. Capsule oxymatrine in treatment of hepatic fibrosis due to chronic viral hepatitis: a randomized, double blind, placebo-controlled, multicenter clinical study. World journal of gastroenterology, 10 (22), 3269–3273.
  • McFeeters, R.L., et al., 2007. The novel fold of scytovirin reveals a new twist for antiviral entry inhibitors. Journal of molecular biology, 369 (2), 451–461.
  • Molloy, J.W., et al., 2012. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology, 55 (2), 429–436.
  • Morazzoni, P., and Bombardelli, E., 1995. Silybum marianum (Cardusarianum). Fitoterapia, 66, 3–42.
  • Mori, T., et al., 2005. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. The journal of biological chemistry, 280 (10), 9345–9353.
  • Morishima, C., et al., 2010. Silymarin inhibits in vitro T-cell proliferation and cytokine production in hepatitis C virus infection. Gastroenterology, 138 (2), 671–681.
  • Nahmias, Y., et al., 2008. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology, 47 (5), 1437–1445.
  • Negro, F., 2010. Adverse effects of drugs in the treatment of viral hepatitis. Best practice & research: clinical gastroenterology, 24 (2), 183–192.
  • Nicholas, C., et al., 2007. Apigenin blocks lipopolysaccharide-induced lethality in vivo and pro-inflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. Journal of immunology, 179 (10), 7121–7127.
  • Ohno, M., et al., 2013. The flavonoid apigenin improves glucose tolerance through inhibition of microRNA maturation in miRNA103 transgenic mice. Scientific reports, 3 (1), 2553.
  • Olaku, O.O., et al., 2015. The role of grape seed extract in the treatment of chemo/radiotherapy induced toxicity: a systematic review of preclinical studies. Nutrition and cancer, 67 (5), 730–740.
  • Oyero, O.G., et al., 2016. Selective inhibition of hepatitis C virus replication by alpha-zam, a Nigella sativa seed formulation. African journal of traditional, complementary and alternative medicines, 13 (6), 144–148.
  • Paddon, C.J., et al., 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496 (7446), 528–532.
  • Pan, S. L., 2006. Bupleurum species: scientific evaluation and clinical applications. 1st ed. Boca Raton: CRC Press/Taylor & Francis Group.
  • Pfeffer, S., and Baumert, T.F., 2010. Impact of microRNAs for pathogenesis and treatment of hepatitis C virus infection. Gastroenterologie clinique et biologique, 34 (8-9), 431–435.
  • Pisonero-Vaquero, S., et al., 2014. Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin. Laboratory investigation: a journal of technical methods and pathology, 94 (3), 262–274.
  • Polyak, S.J., et al., 2013. Silymarin for HCV infection. Antiviral therapy, 18 (2), 141–147.
  • Ravikumar, Y.S., et al., 2011. Inhibition of hepatitis C virus replication by herbal extract: Phyllanthus amarus as potent natural source. Virus research, 158 (1-2), 89–97.
  • Reddy, B.U., et al., 2018. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral research, 150, 47–59.
  • Rehman, S., et al., 2016. Therapeutic potential of Taraxacum officinale against HCV NS5B polymerase: in-vitro and in silico study. Biomedicine & pharmacotherapy, 83, 881–891.
  • Sajitha Lulu, S., et al., 2016. Naringenin and quercetin-potential anti-HCV agents for NS2 protease targets. Natural product research, 30 (4), 464–468.
  • Seeff, L.B., et al., 2008. Herbal product use by persons enrolled in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial. Hepatology, 47 (2), 605–612.
  • Shan, Y., et al., 2007. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology, 133 (4), 1166–1174.
  • Sheir, Z., et al., 2013. Effect of combination of some natural products and Chloroquine on HCV infection in Egyptian patients: pilot study. Journal of liver, 2 (1), 116.
  • Shi, J., et al., 2003. Polyphenolics in grape seeds-biochemistry and functionality. Journal of medicinal food, 6 (4), 291–299.
  • Shibata, C., et al., 2014. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology, 462–463, 42–48.
  • Singh, B., et al., 1993. Hepatoprotective effect of ethanolic extract of Eclipta alba on experimental liver damage in rats and mice. Phytotherapy research, 7 (2), 154–158.
  • Spann, N.J., et al., 2006. Coordinate transcriptional repression of liver fatty acid-binding protein and microsomal triglyceride transfer protein blocks hepatic very low density lipoprotein secretion without hepatosteatosis. The journal of biological chemistry, 281 (44), 33066–33077.
  • Stickel, F., and Hellerbrand, C., 2015. Herbs to treat liver diseases: more than placebo? Clinical liver disease, 6 (6), 136–138.
  • Syder, A.J., et al., 2011. Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. Journal of hepatology, 54 (1), 48–55.
  • Takebe, Y., et al., 2013. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS one, 8 (5), e64449–e64410.
  • Takeshita, M., et al., 2009. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. The journal of biological chemistry, 284 (32), 21165–21176.
  • Thomas, D.L., 2012. Advances in the treatment of hepatitis C virus infection. Topics in antiviral medicine, 20 (1), 5–10.
  • Velussi, M., et al., 1997. Long-term (12 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. Journal of hepatology, 26 (4), 871–879.
  • Wagoner, J., et al., 2010. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology, 51 (6), 1912–1921.
  • Wagoner, J., et al., 2011. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS one, 6 (1), e16464.
  • Wang, T., et al., 2014. Plumbagin inhibits LPS-induced inflammation through the inactivation of the nuclear factor-kappa B and mitogen activated protein kinase signaling pathways in RAW 264. 7 cells. Food and chemical toxicology, 64, 177–183.
  • Wang, H., and Wang, B., 1995. Long-term follow-up result of compound dan shen granule (861 Chong Fu Ji) in treating hepatofibrosis. Chinese journal of integrative traditional West medicine, 5, 4–5.
  • Wartelle-Bladou, C., et al., 2012. Hepatitis C therapy in non-genotype 1 patients: the near future. Journal of viral hepatitis, 19 (8), 525–536.
  • Wu, S.-F., et al., 2012. Anti-hepatitis C virus activity of 3-hydroxy caruilignan C from Swietenia macrophylla stems. Journal of viral hepatitis, 19 (5), 364–370.
  • Yamashita, A., et al., 2012. Inhibition of hepatitis C virus replication and viral helicase by ethyl acetate extract of the marine feather star Alloeocomatella polycladia. Marine drugs, 10 (4), 744–761.
  • Yarnell, E., and Abascal, K., 2009. Dandelion (Taraxacum officinale and T mongolicum. Integrative medicine, 8 (2), 35–38.
  • Zhu, Z., et al., 2008. Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology, 48 (5), 1430–1439.
  • Zhu, Y.-P., et al., 2015. Host APOBEC3G protein inhibits HCV replication through direct binding at NS3. Plos one, 10 (3), e0121608.
  • Ziółkowska, N.E., et al., 2006. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure. Structure, 14 (7), 1127–1135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.