Publication Cover
Archives of Physiology and Biochemistry
The Journal of Metabolic Diseases
Volume 129, 2023 - Issue 5
78
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Butanol fraction of Alstonia boonei De Wild. leaves ameliorate oxidative stress and modulate key hypoglycaemic processes in diabetic rats

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1091-1104 | Received 03 Oct 2020, Accepted 01 Mar 2021, Published online: 12 Apr 2021

References

  • Abdel-Moneim, A., et al., 2018. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: the role of adipocytokines and PPARγ. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 105, 1091–1097.
  • Ademiluyi, A.O., and Oboh, G., 2013. Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and toxicologic pathology, 65 (3), 305–309.
  • Adotey, J.P.K., et al., 2012. A review of the ethnobotany and pharmacological importance of Alstonia boonei De Wild (Apocynaceae). ISRN pharmacology, 2012, 1–9.
  • Aguayo-Mazzucato, C., and Bonner-Weir, S., 2017. Pancreatic β-cell regeneration as a possible therapy for diabetes. Cell metabolism, 168, 73–85.
  • Ajiboye, J.A., et al., 2017. PUFAs from stem bark of Alstonia boonei synergistically modulates diabetic, hepatic and androgenic damage by low expression of COX-2 and iNOS in rats. Journal of molecular biomarkers and diagnosis, 8 (3), 1–9.
  • Akinloye, O., et al., 2013. Hypoglyceamic activity of Alstonia boonei stem bark extract in mice. Agriculture and biology journal of North America, 4 (1), 1–5.
  • Akinmoladun, A.C., et al., 2007. Chemical constituents and antioxidant activity of Alstonia boonei. African journal of biotechnology, 6 (10), 1197–1201.
  • Asif, M., 2014. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. Journal of education and health promotion, 3, 1–8.
  • Babatunde, O., 2017. GC-MS analysis of leaf, stem-bark and root extracts of Alstonia boonei. African journal of pharmacy and pharmacology, 11 (46), 577–581.
  • Carlberg, C., et al., 2020. Insulin resistance and diabetes. In: Nutrigenomics: how science works. Switzerland: Springer.
  • Cerf, M.E., 2013. Beta cell dysfunction and insulin resistance. Frontiers in endocrinology, 4, 37–12.
  • Cho, N., et al., 2018. IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice, 138, 271–281.
  • Chowdhury, P., and Soulsby, M., 2002. Lipid peroxidation in rat brain is increased by simulated weightlessness and decreased by a soy-protein diet. Annals of clinical and laboratory science, 32 (2), 188–192.
  • Chukwuma, C.I., et al., 2018. Erythritol reduces small intestinal glucose absorption, increases muscle glucose uptake, improves glucose metabolic enzymes activities and increases expression of Glut-4 and IRS-1 in type 2 diabetic rats. European journal of nutrition, 57 (7), 2431–2444.
  • Defronzo, R.A., and Tripathy, D., 2009. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care, 32 (suppl_2), S157–S163.
  • Ellman, G.L., 1959. Tissue sulfhydryl groups. Archives of biochemistry and biophysics, 82 (1), 70–77.
  • Enechi, O., et al., 2014. Acute toxicity, lipid peroxidation and ameliorative properties of Alstonia boonei ethanol leaf extract on the kidney markers of alloxan induced diabetic rats. African journal of biotechnology, 13 (5), 678–682.
  • Erukainure, O.L., et al., 2017. Caffeine–rich infusion from Cola nitida (kola nut) inhibits major carbohydrate catabolic enzymes; abates redox imbalance; and modulates oxidative dysregulated metabolic pathways and metabolites in Fe2+-induced hepatic toxicity. Biomedicine & pharmacotherapy, 96, 1065–1074.
  • Erukainure, O.L., et al., 2019. Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine modulates glucose homeostasis by enhancing insulin secretion and inhibiting redox imbalance in a rat model of diabetes induced by high fructose diet and streptozotocin. Journal of ethnopharmacology, 237, 159–170.
  • Ezeani, C., et al., 2017. Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes. Journal of intercultural ethnopharmacology, 6 (1), 22–28.
  • Farook, S.M., et al., 2011. Assessment of antidiabetic potential of Caesalpinia digyna Rottler root extract in streptozotocin induced diabetic rats. International journal of pharmaceutical sciences and research, 2 (3), 675–684.
  • Gil, D., et al., 2017. Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering, 4 (4), 18–19.
  • Gurcan, M.N., et al., 2009. Histopathological image analysis: a review. IEEE reviews in biomedical engineering, 2, 147–171.
  • Hadwan, M.H., and Abed, H.N., 2016. Data supporting the spectrophotometric method for the estimation of catalase activity. Data in brief, 6, 194–199.
  • Ibrahim, M.A., et al., 2016. Butanol fraction of Parkia biglobosa (Jacq.) G. Don leaves enhance pancreatic β-cell functions, stimulates insulin secretion and ameliorates other type 2 diabetes-associated complications in rats. Journal of ethnopharmacology, 183, 103–111.
  • IDF. 2017. International Diabetes Federation Atlas. International Diabetes Federation Brussels, Belgium, 8th Edition. Available from: https://diabetesatlas.org/en/ [Accessed 12 Sep 2020].
  • IDF. 2019. International Diabetes Federation Atlas. International Diabetes Federation Busan, South Korea, 9th edition. Available from: https://diabetesatlas.org/en/ [Accessed 12 Sep 2020].
  • Islam, M.S., 2011. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine, 19 (1), 25–31.
  • Islam, M.S., and Choi, H., 2008. Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytotherapy research, 22 (8), 1025–1029.
  • Jalal, D.I., et al., 2011. Uric acid as a mediator of diabetic nephropathy. Seminars in nephrology, 31 (5), 459–465.
  • Jegadeeswari, P., et al., 2012. GC-MS analysis of bioactive components of Aristolochia krysagathra (Aristolochiaceae). Journal of current chemical and pharmaceutical sciences, 2 (4), 226–232.
  • Kakkar, P., et al., 1984. A modified spectrophotometric assay of superoxide dismutase. Indian journal of biochemistry & biophysics, 21 (2), 130–132.
  • Kalita, D., et al., 2018. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One, 13 (1), e0191025.
  • Kalkan, I.H., and Suher, M., 2013. The relationship between the level of glutathione, impairment of glucose metabolism and complications of diabetes mellitus. Pakistan journal of medical sciences, 29 (4), 938–942.
  • Kehinde, A.J., et al., 2016. Stem bark extract from Alstonia boonei attenuates cholesterol, triglyceride and oxidative damage via low immunohistochemical expression in small intestinal tract of male rats. Journal of diabetes metabolism, 7 (715), 1–7.
  • Kohei, K., 2010. Pathophysiology of type 2 diabetes and its treatment policy. Japan medical association journal, 53 (1), 41–46.
  • Kumawat, M., et al., 2013. Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. North American journal of medical sciences, 5 (3), 213–219.
  • Li, F.F., et al., 2016. Blood glucose fluctuations in type 2 diabetes patients treated with multiple daily injections. Journal of diabetes research, 2016, 1028945–1028948.
  • Lo, S., et al., 1970. Determination of glycogen in small tissue samples. Journal of applied physiology, 28 (2), 234–236.
  • Lowry, O.H., et al., 1951. Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193 (1), 265–275.
  • Momeni, A., 2012. Serum uric acid and diabetic nephropathy. Journal of renal injury prevention, 1 (1), 37–38.
  • Nita, M., and Grzybowski, A., 2016. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative medicine and cellular longevity, 2016, 3164734–3164723.
  • Nkono, B.L.N.Y., et al., 2014. Antihyperglycemic and antioxydant properties of Alstonia boonei De wild.(Apocynaceae) stem bark aqueous extract in dexamethasone-induced hyperglycemic rats. International journal of diabetes research, 3 (3), 27–35.
  • Ogurtsova, K., et al., 2017. IDF diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice, 128, 40–50.
  • Oh, Y.S., 2015. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evidence-based complementary and alternative medicine: eCAM, 2015, 629863–629812.
  • Olanlokun, J., and Olorunsogo, O., 2018. Toxicology of solvent extract and fractions of alstonia boonei (DC.) wild stem bark in rats. Journal of herbmed pharmacology, 7 (3), 129–135.
  • Owolabi, O., et al., 2014. The ethanol leaf extract of Alstonia boonei (Apocynaceae) reduces hyperglycemia in alloxan-induced diabetic rats. Nigerian journal of pharmaceutical research, 13 (1), 12–21.
  • Oyebode, O.A., et al., 2018. Boerhaavia diffusa inhibits key enzymes linked to type 2 diabetes in vitro and in silico; and modulates abdominal glucose absorption and muscle glucose uptake ex vivo. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 106, 1116–1125.
  • Oyebode, O.A., et al., 2019a. Crassocephalum rubens, a leafy vegetable, suppresses oxidative pancreatic and hepatic injury and inhibits key enzymes linked to type 2 diabetes: an ex vivo and in silico study. Journal of food biochemistry, 43 (8), e12930.
  • Oyebode, O.A., et al., 2019b. Phytochemical constituents, antioxidant and antidiabetic activities of different extracts of the leaves, stem and root barks of Alstonia boonei: an in vitro and in silico study. Botany letters, 166 (4), 444–456.
  • Oyebode, O.A., et al., 2020. Crassocephalum rubens (Juss. Ex Jacq.) S. Moore improves pancreatic histology, insulin secretion, liver and kidney functions and ameliorates oxidative stress in fructose-streptozotocin induced type 2 diabetic rats. Drug and chemical toxicology. doi:10.1080/01480545.2020.1716783
  • Pan, Y., et al., 2017. Physicochemical properties and antidiabetic effects of a polysaccharide from corn silk in high-fat diet and streptozotocin-induced diabetic mice. Carbohydrate polymers, 164, 370–378.
  • Patel, D., et al., 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian pacific journal of tropical biomedicine, 2 (4), 320–330.
  • Sanni, O., et al., 2020. Fractions from Annona muricata attenuate oxidative stress in pancreatic tissues, inhibits key carbohydrate digesting enzymes and intestinal glucose absorption but enhances muscle glucose uptake. Journal of food biochemistry, 44 (6),  e13211.
  • Smith, I.K., et al., 1988. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Analytical biochemistry, 175 (2), 408–413.
  • Swisa, A., et al., 2017. Metabolic stress and compromised identity of pancreatic beta cells. Frontiers in genetics, 8 (21), 21–11.
  • Telagari, M., and Hullatti, K., 2015. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian journal of pharmacology, 47 (4), 425–429.
  • Tyagia, T., and Argawak, M., 2017. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms. Journal of pharmacognosy and phytochemistry, 6 (1), 195–206.
  • Wilson, R.D., and Islam, M.S., 2012. Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacological reports, 64 (1), 129–139.
  • Yin, Z., et al., 2014. α-Glucosidase inhibitors isolated from medicinal plants. Food science and human wellness, 3 (3–4), 136–174.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.