283
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Role of oxidative stress in diabetes-induced complications and their management with antioxidants

, , , , , & show all
Received 28 Mar 2023, Accepted 02 Jun 2023, Published online: 11 Aug 2023

References

  • Haidara, M., et al., 2010. Diabetes and antioxidants: myth or reality? Current vascular pharmacology, 8 (5), 661–672. doi: 10.2174/157016110792006941.
  • Abdelrahman, A.H., et al., 2021. Role of some serum biomarkers in the early detection of diabetic cardiomyopathy. Future science OA, 7 (5), FSO682. doi: 10.2144/fsoa-2020-0184.
  • Abiodun, O.A., and Ola, M.S., 2020. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi journal of biological sciences, 27 (3), 905–912. doi: 10.1016/j.sjbs.2020.01.026.
  • Acharya, A., et al., 2010. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxidative medicine and cellular longevity, 3 (1), 23–34. doi: 10.4161/oxim.3.1.10095.
  • Addabbo, F., Montagnani, M., and Goligorsky, M.S., 2009. Mitochondria and reactive oxygen species. Hypertension (Dallas, Tex. : 1979), 53 (6), 885–892. doi: 10.1161/HYPERTENSIONAHA.109.130054.
  • Aggarwal, B.B., et al., 2007. Curcumin: the Indian solid gold. Advances in experimental medicine and biology, 595, 1–75. doi: 10.1007/978-0-387-46401-5_1.
  • Ago, T., et al., 2011. Pathophysiological roles of NADPH oxidase/Nox family proteins in the vascular system review and perspective. Circulation journal : official journal of the japanese circulation society, 75 (8), 1791–1800. doi: 10.1253/circj.CJ-11-0388.
  • Ahmadvand, H., Tavafi, M., and Khosrowbeygi, A., 2012. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. Journal of diabetes and its complications, 26 (6), 476–482. doi: 10.1016/j.jdiacomp.2012.06.004.
  • Ak, T., and Gülçin, I., 2008. Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174 (1), 27–37. doi: 10.1016/j.cbi.2008.05.003.
  • Antonetti, D.A., Klein, R., and Gardner, T.W., 2012. Diabetic retinopathy. The new England journal of medicine, 366 (13), 1227–1239. doi: 10.1056/NEJMra1005073.
  • Ariyoshi, H., et al., 2001. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of cellular biochemistry, 81 (1), 102–113.
  • Arnoult, D., et al., 2005. Bax/bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Current biology : CB, 15 (23), 2112–2118. doi: 10.1016/j.cub.2005.10.041.
  • Ashok, S., et al., 2002. Prevalence of neuropathy in type 2 diabetic patients attending a diabetes centre in South India. The journal of the association of physicians of india, 50, 546–550.
  • Atia, A., and Abdullah, A., 2014. The Nrf2-Keap1 signalling pathway: Mechanisms of ARE transcription regulation in antioxidant cellular defence. International journal of PharmTech research, 6, 154–167.
  • Bansal, D., et al., 2014. Prevalence and risk factors of development of peripheral diabetic neuropathy in type 2 diabetes mellitus in a tertiary care setting. Journal of diabetes investigation, 5 (6), 714–721. doi: 10.1111/jdi.12223.
  • Barnett, P.A., et al., 1986. The effect of oxidation on sorbitol pathway kinetics. Diabetes, 35 (4), 426–432. doi: 10.2337/diab.35.4.426.
  • Barot, M., Gokulgandhi, M.R., and Mitra, A.K., 2011. Mitochondrial dysfunction in retinal diseases. Current eye research, 36 (12), 1069–1077. doi: 10.3109/02713683.2011.607536.
  • Behl, T., and Kotwani, A., 2015. Exploring the various aspects of the pathological role of vascular endothelial growth factor (VEGF) in diabetic retinopathy. Pharmacological research, 99, 137–148. doi: 10.1016/j.phrs.2015.05.013.
  • BELL, E.T., 1953. Renal vascular disease in diabetes mellitus. Diabetes, 2 (5), 376–389. doi: 10.2337/diab.2.5.376.
  • Bhakkiyalakshmi, E., et al., 2015. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes. Pharmacological research, 91, 104–114. doi: 10.1016/j.phrs.2014.10.004.
  • Bhattacharjee, N., et al., 2016. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. European journal of pharmacology, 791, 8–24. doi: 10.1016/j.ejphar.2016.08.022.
  • Bierhaus, A., et al., 1998. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovascular research, 37 (3), 586–600. doi: 10.1016/s0008-6363(97)00233-2.
  • De Blasio, M.J., et al., 2015. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free radical biology & medicine, 87, 137–147. doi: 10.1016/j.freeradbiomed.2015.04.028.
  • Boulom, V., et al., 2012. Poly ADP-ribose polymerase (PARP) inhibition modulates glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in a diabetic mouse model of hind limb ischemia reperfusion. Journal of the American College of Surgeons, 215 (3), S159. doi: 10.1016/j.jamcollsurg.2012.06.410.
  • Brandao-Neto, J., et al., 2000. Zinc kinetics in insulin-dependent diabetes mellitus patients. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 13 (2), 141–145. doi: 10.1023/a:1009223105246.
  • Brandes, R.P., Weissmann, N., and Schröder, K., 2014. Nox family NADPH oxidases: Molecular mechanisms of activation. Free radical biology & medicine, 76, 208–226. doi: 10.1016/j.freeradbiomed.2014.07.046.
  • Brito, P.L., et al., 1998. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney international, 53 (3), 754–761. doi: 10.1046/j.1523-1755.1998.00809.x.
  • Brownlee, M., 2001. Biochemistry and molecular cell biology of diabetic complications. Nature, 414 (6865), 813–820. doi: 10.1038/414813a.
  • Brownlee, M., 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54 (6), 1615–1625. doi: 10.2337/diabetes.54.6.1615.
  • Bryan, H.K., et al., 2013. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochemical pharmacology, 85 (6), 705–717. doi: 10.1016/j.bcp.2012.11.016.
  • Buraczynska, M., et al., 2018. Interleukin-4 Gene Intron 3 VNTR polymorphism in Type 2 diabetes patients with peripheral neuropathy. Immunological investigations, 47 (2), 146–153. doi: 10.1080/08820139.2017.1407334.
  • Buse, M.G., 2006. Hexosamines, insulin resistance, and the complications of diabetes: current status. American journal of physiology - endocrinology and metabolism.
  • Butkowski, E.G., and Jelinek, H.F., 2017. Hyperglycaemia, oxidative stress and inflammatory markers. Redox report : communications in free radical research, 22 (6), 257–264. doi: 10.1080/13510002.2016.1215643.
  • Byrne, N.J., et al., 2021. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free radical biology & medicine, 169, 317–342. doi: 10.1016/j.freeradbiomed.2021.03.046.
  • Cagnina, A., et al., 1999. Atherosclerosis–an inflammatory disease. The new England journal of medicine, 340 (2), 302–309.
  • Cameron, N.E., et al., 1994. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: Dose-response considerations and independence from a myo-inositol mechanism. Diabetologia, 37 (7), 651–663. doi: 10.1007/BF00417688.
  • Cao, Z., and Cooper, M.E., 2011. Pathogenesis of diabetic nephropathy. Journal of diabetes investigation, 2 (4), 243–247. doi: 10.1111/j.2040-1124.2011.00131.x.
  • Cardoso, R.R., et al., 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food research international, 128, 108782. doi: 10.1016/j.foodres.2019.108782.
  • Carr, M.E., 2001. Diabetes mellitus: a hypercoagulable state. Journal of diabetes and its complications, 15 (1), 44–54. doi: 10.1016/s1056-8727(00)00132-x.
  • Casellini, C.M., and Vinik, A.I., 2006. Recent advances in the treatment of diabetic neuropathy. Current opinion in internal medicine, 5 (3), 260–266. doi: 10.1097/01.med.0000216963.51751.be.
  • Cecilia, O.M., et al., 2019. Oxidative stress as the main target in diabetic retinopathy pathophysiology. Journal of diabetes research, 2019, 8562408. doi: 10.1155/2019/8562408.
  • Ceriello, A., 2005. Acute hyperglycaemia: a ‘new’ risk factor during myocardial infarction. European heart journal, 26 (4), 328–331. doi: 10.1093/eurheartj/ehi049.
  • Ceriello, A., 2006. Oxidative stress and diabetes-associated complications. Endocrine practice : official journal of the american college of endocrinology and the american association of clinical endocrinologists, 12 Suppl 1, 60–62. doi: 10.4158/EP.12.S1.60.
  • Chait, A., et al., 2005. Thematic review series: the immune system and atherogenesis. Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease? Journal of lipid research, 46 (3), 389–403. doi: 10.1194/jlr.R400017-JLR200.
  • Chang, C.C., et al., 2012. Effect of resveratrol on oxidative and inflammatory stress in liver and spleen of streptozotocin-induced type 1 diabetic rats. Chinese journal of physiology, 55 (3), 1–10.
  • Cheloni, R., et al., 2019. Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis. BMJ open, 9 (3), e022188. doi: 10.1136/bmjopen-2018-022188.
  • Chen, Q., et al., 2003. Production of reactive oxygen species by mitochondria: central role of complex III. The journal of biological chemistry, 278 (38), 36027–36031. doi: 10.1074/jbc.M304854200.
  • Chen, Y.J., et al., 2019. A novel compound AB-38b improves diabetes-associated cognitive decline in mice via activation of Nrf2/ARE pathway. Brain research bulletin, 150, 160–167. doi: 10.1016/j.brainresbull.2019.05.010. Cho, N.H., 2016. Q&A: five questions on the 2015 IDF diabetes atlas. Diabetes research and clinical practice, 115, 157–159.
  • Chou, S.T., and Tseng, S.T., 2017. Oxidative stress markers in type 2 diabetes patients with diabetic nephropathy. Clinical and experimental nephrology, 21 (2), 283–292. doi: 10.1007/s10157-016-1283-7.
  • Chu, C., et al., 2017. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed research international, 2017, 5615647. doi: 10.1155/2017/5615647.
  • Clarke, M., and Dodson, P.M., 2007. PKC inhibition and diabetic microvascular complications. Best practice and research: clinical endocrinology and metabolism.
  • Cooper, M.E., et al., 2000. The cross-link breaker, N-phenacylthiazolium bromide prevents vascular advanced glycation end-product accumulation. Diabetologia, 43 (5), 660–664. doi: 10.1007/s001250051355.
  • Crawford, T., et al., 2009. Diabetic retinopathy and angiogenesis. Current diabetes reviews, 5 (1), 8–13. doi: 10.2174/157339909787314149.
  • Dale, D.C., Boxer, L., and Conrad Liles, W., 2008. The phagocytes: neutrophils and monocytes. Blood, 112 (4), 935–945. doi: 10.1182/blood-2007-12-077917.
  • Dallak, M.M., et al., 2008. Oxidative stress as a common mediator for apoptosis induced-cardiac damage in diabetic rats. The open cardiovascular medicine journal, 2 (1), 70–78. doi: 10.2174/1874192400802010070.
  • Van Dam, P.S., et al., 1995. The role of oxidative stress in neuropathy and other diabetic complications. Diabetes/metabolism reviews, 11 (3), 181–192. doi: 10.1002/dmr.5610110303.
  • Deng, J., et al., 2023. Potential clinical biomarkers and perspectives in diabetic cardiomyopathy. Diabetology & metabolic syndrome, 15 (1), 35. 2023 15:1, doi: 10.1186/s13098-023-00998-y.
  • Díaz-Coránguez, M., Ramos, C., and Antonetti, D.A., 2017. The inner blood-retinal barrier: cellular basis and development. Vision research, 139, 123–137. doi: 10.1016/j.visres.2017.05.009.
  • Drummond, K., and Mauer, M., 2002. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes, 51 (5), 1580–1587. doi: 10.2337/diabetes.51.5.1580.
  • Duni, A., et al., 2019. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling ariadne’s thread. International journal of molecular sciences, 20 (15), doi: 10.3390/ijms20153711.
  • Dvoriantchikova, G., et al., 2012. Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after Ischemia. Investigative ophthalmology & visual science, 53 (6), 2823–2830. doi: 10.1167/iovs.12-9526.
  • Edwards, A.S., et al., 1999. Carboxyl-terminal phosphorylation regulates the function and subcellular localization of protein kinase C βII. The journal of biological chemistry, 274 (10), 6461–6468. doi: 10.1074/jbc.274.10.6461.
  • Edwards, J.L., et al., 2008. Diabetic neuropathy: mechanisms to management. Pharmacology & therapeutics, 120 (1), 1–34. doi: 10.1016/j.pharmthera.2008.05.005PMC]
  • El-Benna, J., et al., 2009. p47phox, the phagocyte NADP H oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Experimental & molecular medicine, 41 (4), 217–225. doi: 10.3858/emm.2009.41.4.058.
  • Evans, J.L., et al., 2002. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocrine reviews, 23 (5), 599–622. doi: 10.1210/er.2001-0039.
  • Evans-Molina, C., et al., 2007. Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes, 56 (3), 827–835. doi: 10.2337/db06-1440.
  • Falk, R.J., et al., 1983. Polyantigenic expansion of basement membrane constituents in diabetic nephropathy. Diabetes, 32 (Suppl 2), 34–39. doi: 10.2337/diab.32.2.s34.
  • Farid, N., et al., 2013. Vitamin E and diabetic nephropathy in mice model and humans. World journal of nephrology, 2 (4), 111–124. doi: 10.5527/wjn.v2.i4.111.
  • Feldman, E.L., et al., 2019. Diabetic neuropathy. Nature reviews. Disease primers, 5 (1), 42. doi: 10.1038/s41572-019-0097-9.
  • Figueroa-Romero, C., Sadidi, M., and Feldman, E.L., 2008. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Reviews in endocrine & metabolic disorders, 9 (4), 301–314. doi: 10.1007/s11154-008-9104-2.
  • Fontayne, A., et al., 2002. Phosphorylation of p47phox sites by PKC α, βII, δ, and ζ: Effect on binding to p22phox and on NADPH oxidase activation. Biochemistry, 41 (24), 7743–7750. doi: 10.1021/bi011953s.
  • Forsberg, E., et al., 2015. Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. Journal of diabetes and its complications, 29 (8), 1152–1158. doi: 10.1016/j.jdiacomp.2015.08.006.
  • Frank, R.N., 2004. Diabetic retinopathy. The new England journal of medicine, 350 (1), 48–58. doi: 10.1056/NEJMra021678.
  • Franzén, S., et al., 2016. Pronounced kidney hypoxia precedes albuminuria in type 1 diabetic mice. American journal of physiology. Renal physiology, 310 (9), F807–F809. doi: 10.1152/ajprenal.00049.2016.
  • Freeman, R., 2005. Autonomic peripheral neuropathy. Lancet (London, England), 365 (9466), 1259–1270. Elsevier B.V., doi: 10.1016/S0140-6736(05)74815-7.
  • Frey, T., and Antonetti, D.A., 2011. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxidants & redox signaling, 15 (5), 1271–1284. doi: 10.1089/ars.2011.3906.
  • Funatsu, H., et al., 2002. Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. The British journal of ophthalmology, 86 (3), 311–315. doi: 10.1136/bjo.86.3.311.
  • Gabbay, K.H., 1973. The sorbitol pathway and the complications of diabetes. The new England journal of medicine, 288 (16), 831–836. doi: 10.1056/NEJM197304192881609.
  • Von Gagern, G., et al., 1999. The importance of transcription factors in the regulation of inflammatory response in polytraumatized patients. Medizinische Klinik (Munich, Germany : 1983), Suppl 3, 62–65. doi: 10.1007/BF03042195.
  • Garcia, T.B., Hollborn, M., and Bringmann, A., 2017. Expression and signaling of NGF in the healthy and injured retina. Cytokine & GROWTH FACTOR REVIEWS, 34, 43–57. doi: 10.1016/j.cytogfr.2016.11.005.
  • Genova, M.L., and Lenaz, G., 2011. New developments on the functions of coenzyme Q in mitochondria. BioFactors (Oxford, England), 37 (5), 330–354. doi: 10.1002/biof.168.
  • Gerardo Yanowsky-Escatell, F., et al., 2020. The role of dietary antioxidants on oxidative stress in diabetic nephropathy. Iranian journal of kidney diseases, 14 (2), 81–94.
  • Glovaci, D., Fan, W., and Wong, N.D., 2019. Epidemiology of diabetes mellitus and cardiovascular disease. Current cardiology reports, 21 (4), 21. doi: 10.1007/s11886-019-1107-y.
  • Gnudi, L., Coward, R.J.M., and Long, D.A., 2016. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends in endocrinology & metabolism, 27 (11), 820–830. doi: 10.1016/j.tem.2016.07.002.
  • Gnudi, L., Gentile, G., and Ruggenenti, P., 2018. The patient with diabetes mellitus. Oxford University Press.
  • Gordon, J.W., et al., 2015. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochemistry and cell biology = Biochimie et Biologie Cellulaire, 93 (5), 452–465. doi: 10.1139/bcb-2015-0012.
  • Griffin, M.D., Bergstralhn, E.J., and Larson, T.S., 1995. Renal papillary necrosis–a sixteen-year clinical experience - PubMed. Journal of the American society of nephrology : JASN, 6 (2), 248–256. doi: 10.1681/ASN.V62248.
  • Gu, H.F., 2019. Epigenetics of diabetic nephropathy. Handbook of nutrition, diet, and epigenetics, 2, 865–884.
  • Guo, Y., et al., 2015. Epigenetic regulation of Keap1-Nrf2 signaling. Free radical biology & medicine, 88 (Pt B), 337–349. doi: 10.1016/j.freeradbiomed.2015.06.013.
  • Gupta, K.L., et al., 1990. Renal papillary necrosis in diabetes mellitus. The journal of the association of physicians of India, 38 (12), 908–911.
  • Ha, K.N., et al., 2006. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Investigative ophthalmology & visual science, 47 (6), 2709–2715. doi: 10.1167/iovs.05-1322.
  • De Haan, J.B., 2011. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes, 60 (11), 2683–2684. doi: 10.2337/db11-1072.
  • Harris, R.D., et al., 1991. Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney international, 40 (1), 107–114. doi: 10.1038/ki.1991.187.
  • He, T., et al., 2016. Resveratrol inhibits renal interstitial fibrosis in diabetic nephropathy by regulating AMPK/NOX4/ROS pathway. Journal of molecular medicine (Berlin, Germany), 94 (12) 1359–1371. doi: 10.1007/s00109-016-1451-y.
  • He, Z., Rask-Madsen, C., and King, G.L., 2003. Mechanisms of cardiovascular complications in diabetes and potential new pharmacological therapies. European heart journal supplements, 5 (B), B51–B57. doi: 10.1016/S1520-765X(03)90041-1.
  • Hesp, A.C., et al., 2020. The role of renal hypoxia in the pathogenesis of diabetic kidney disease: a promising target for newer renoprotective agents including SGLT2 inhibitors? Kidney international, 98 (3), 579–589. doi: 10.1016/j.kint.2020.02.041.
  • Higdon, J.V., and Frei, B., 2003. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical reviews in food science and nutrition, 43 (1), 89–143. doi: 10.1080/10408690390826464.
  • Ho, E.C.M., et al., 2006. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes, 55 (7), 1946–1953. doi: 10.2337/db05-1497.
  • Homme, R.P., et al., 2018. Remodeling of retinal architecture in diabetic retinopathy: disruption of ocular physiology and visual functions by inflammatory gene products and pyroptosis. Frontiers in physiology, 9, 1268. doi: 10.3389/fphys.2018.01268.
  • Hosseini, A., and Abdollahi, M., 2013. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxidative medicine and cellular longevity, 2013, 168039. doi: 10.1155/2013/168039.
  • Hricik, D.E., et al., 1983. Captopril-Induced Functional Renal Insufficiency in Patients with Bilateral Renal-Artery Stenoses or Renal-Artery Stenosis in a Solitary Kidney. The new England journal of medicine, 308 (7), 373–376. doi: 10.1056/NEJM198302173080706.
  • Huynh, K., et al., 2012. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia, 55 (5), 1544–1553. doi: 10.1007/s00125-012-2495-3.
  • Huynh, K., et al., 2013. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free radical biology & medicine, 60, 307–317. doi: 10.1016/j.freeradbiomed.2013.02.021.
  • Ighodaro, O.M., 2018. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & pharmacotherapy, 108, 656–662. doi: 10.1016/j.biopha.2018.09.058.
  • Iyer, G.Y.N., Islam, M.F., and Quastel, J.H., 1961. Biochemical aspects of phagocytosis. Nature, 192 (4802), 535–541. doi: 10.1038/192535a0.
  • Jain, M., 2012. Histopathological changes in diabetic kidney disease. Clinical queries: nephrology, 1 (2), 127–133. doi: 10.1016/S2211-9477(12)70006-7.
  • Jakus, V., and Rietbrock, N., 2004. Advanced glycation end-products and the progress of diabetic vascular complications - PubMed [online]. Physiol research 2004, 53 (2), 131–142. Available from: https://pubmed.ncbi.nlm.nih.gov/15046548/ [Accessed 22 Apr 2021].
  • Jay, D., Hitomi, H., and Griendling, K.K., 2006. Oxidative stress and diabetic cardiovascular complications. Free radical biology & medicine, 40 (2), 183–192. doi: 10.1016/j.freeradbiomed.2005.06.018.
  • Jha, J.C., et al., 2016. Diabetes and kidney disease: role of oxidative stress. Antioxidants & redox signaling, 25 (12), 657–684. doi: 10.1089/ars.2016.6664.
  • Jiang, X., et al., 2014. Activation of mitochondrial protease OMA1 by bax and bak promotes cytochrome c release during apoptosis. Proceedings of the national academy of sciences of the Uni States of America, 111 (41), 14782–14787. doi: 10.1073/pnas.1417253111.
  • Johnson, R., et al., 2020. Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model. Scientific reports, 10 (1), 12352. doi: 10.1038/s41598-020-69254-x.
  • Kaarniranta, K., et al., 2020. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Progress in retinal and eye research, 79, 100858. doi: 10.1016/j.preteyeres.2020.100858.
  • Kaleem, M., et al., 2006. Biochemical effects of Nigella sativa L seeds in diabetic rats. Indian journal of experimental biology, 44 (9), 745–748.
  • Kalyanaraman, B., 2013. Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox biology, 1 (1), 244–257. doi: 10.1016/j.redox.2013.01.014.
  • Kang, Q., and Yang, C., 2020. Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox biology, 37, 101799. doi: 10.1016/j.redox.2020.101799.
  • Kannel, W.B., 1985. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. American heart journal, 110 (5), 1100–1107. doi: 10.1016/0002-8703(85)90224-8.
  • Kashihara, N., et al., 2010. Oxidative stress in diabetic nephropathy. Current medicinal chemistry, 17 (34), 4256–4269. doi: 10.2174/092986710793348581.
  • Kȩdziora-Kornatowska, K., et al., 2003. Effect of vitamin E and vitamin C supplementation on antioxidative state and renal glomerular basement membrane thickness in diabetic kidney. Nephron, 95 (4), e134-43. doi: 10.1159/000074840.
  • Khan, Z.A., and Chakrabarti, S., 2007. Cellular signaling and potential new treatment targets in diabetic retinopathy. Experimental diabetes research, 2007, 31867. doi: 10.1155/2007/31867.
  • Khazim, K., et al., 2013. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. American journal of physiology - renal physiology, 305 (5).
  • Kim, E.S., et al., 2015. Inverse association between serum total bilirubin levels and diabetic peripheral neuropathy in patients with type 2 diabetes. Endocrine, 50 (2), 405–412. doi: 10.1007/s12020-015-0583-0.
  • Kim, Y., et al., 1991. Differential expression of basement membrane collagen chains in diabetic nephropathy. The American journal of pathology, 138 (2), 413–420.
  • Kimmelstiel, P., and Wilson, C., 1936. Intercapillary Lesions in the Glomeruli of the Kidney. The American journal of pathology, 12 (1), 83–98.7.
  • Kitada, M., et al., 2003. Translocation of glomerular p47phox and p67phox by protein kinase C-β activation is required for oxidative stress in diabetic nephropathy. Diabetes, 52 (10), 2603–2614. doi: 10.2337/diabetes.52.10.2603.
  • Ko, S.H., and Cha, B.Y., 2012. Diabetic peripheral neuropathy in type 2 diabetes mellitus in Korea. Diabetes & metabolism journal, 36 (1), 6–12. doi: 10.4093/dmj.2012.36.1.6.
  • Kocaadam, B., and Şanlier, N., 2017. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical reviews in food science and nutrition, 57 (13), 2889–2895. doi: 10.1080/10408398.2015.1077195
  • Koekkoek, W.A.C., and Van Zanten, A.R.H., 2016. Antioxidant vitamins and trace elements in critical illness. Nutrition in clinical practice : official publication of the American society for parenteral and enteral nutrition, 31 (4), 457–474. doi: 10.1177/0884533616653832.
  • Koistinen, M.J., 1990. Prevalence of asymptomatic myocardial ischaemia in diabetic subjects. BMJ (Clinical Research ed.), 301 (6743), 92–95. doi: 10.1136/bmj.301.6743.92.
  • Kolm-Litty, V., et al., 1998. High glucose-induced transforming growth factor β1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. The journal of clinical investigation, 101 (1), 160–169. doi: 10.1172/JCI119875.
  • Kopel, J., Pena-Hernandez, C., and Nugent, K., 2019. Evolving spectrum of diabetic nephropathy. World journal of diabetes, 10 (5), 269–279. doi: 10.4239/wjd.v10.i5.269.
  • Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., 1997. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS letters, 416 (1), 15–18. doi: 10.1016/s0014-5793(97)01159-9.
  • Kowaltowski, A.J., et al., 2009. Mitochondria and reactive oxygen species. Free radical biology & medicine, 47 (4), 333–343. doi: 10.1016/j.freeradbiomed.2009.05.004.
  • Kowluru, R.A., 2005. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxidants & redox signaling, 7 (11-12), 1581–1587. doi: 10.1089/ars.2005.7.1581.
  • Kowluru, R. A., and Chan, P. S., 2007. Oxidative stress and diabetic retinopathy. Experimental Diabesity Research.
  • Kowluru, R.A., Zhong, Q., and Santos, J.M., 2012. Matrix metalloproteinases in diabetic retinopathy: potential role of MMP-9. Expert opinion on investigational drugs, 21 (6), 797–805. doi: 10.1517/13543784.2012.681043.
  • Krishan, P., and Chakkarwar, V.A., 2011. Diabetic nephropathy: aggressive involvement of oxidative stress. Journal of pharmaceutical education and research, 2 (1), 35.
  • Kumar, A., et al., 2007. Effects of resveratrol on nerve functions, oxidative stress and DNA fragmentation in experimental diabetic neuropathy. Life sciences, 80 (13), 1236–1244. doi: 10.101/j.lfs.2006.12.036.
  • Kume, S., and Koya, D., 2015. Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes & metabolism journal, 39 (6), 451–460. doi: 10.4093/dmj.2015.39.6.451.
  • Kumric, M., et al., 2021. Role of novel biomarkers in diabetic cardiomyopathy. World journal of diabetes, 12 (6), 685–705. doi: 10.4239/wjd.v12.i6.685.
  • Lane, P.H., et al., 1993. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney international, 43 (3), 661–667. doi: 10.1038/ki.1993.95.
  • Lassègue, B., and Clempus, R.E., 2003. Vascular NAD(P)H oxidases: specific features, expression, and regulation. American journal of physiology - regulatory integrative and comparative physiology.
  • Leehey, D.J., et al., 2000. Role of angiotensin II in diabetic nephropathy. Kidney international. Supplement, 77, S93–S98. doi: 10.1046/j.1523-1755.2000.07715.x.
  • Leinninger, G.M., et al., 2006. Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nature clinical practice. Neurology, 2 (11), 620–628. doi: 10.1038/ncpne.
  • Leinninger, G.M., Vincent, A.M., and Feldman, E.L., 2004. The role of growth factors in diabetic peripheral neuropathy. Journal of the peripheral nervous system : JPNS, 9 (1), 26–53. doi: 10.1111/j.1085-9489.2004.09105.x.
  • Lennertz, R.C., et al., 2011. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. Journal of neurophysiology, 106 (2), 905–914. doi: 10.1152/jn.01123.2010.
  • Leon, B.M., and Maddox, T.M., 2015. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World journal of diabetes, 6 (13), 1246–1258. doi: 10.4239/wjd.v6.i13.1246.
  • Li, B., et al., 2014. Zinc is essential for the transcription function of Nrf2 in human renal tubule cells in vitro and mouse kidney in vivo under the diabetic condition. Journal of cellular and molecular medicine, 18 (5), 895–906. doi: 10.1111/jcmm.12239.
  • Li, J.J., et al., 2007. Podocyte biology in diabetic nephropathy. Kidney international. Supplement, (106), S36–S42. doi: 10.1038/sj.ki.5002384.
  • Ling, C., and Groop, L., 2009. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes, 58 (12), 2718–2725. doi: 10.2337/db09-1003.
  • Li, W.J., Shin, M.K., and Oh, S.J., 2011. Poly(ADP-ribose) polymerase is involved in the development of diabetic cystopathy via regulation of nuclear factor kappa B. Urology, 77 (5), 1265.e1-1265–e8. doi: 10.1016/j.urology.2011.01.022.
  • Liu, L., et al., 2015. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell, 160 (1-2), 177–190. doi: 10.1016/j.cell.2014.12.019.
  • Lorenzi, M., 2007. T polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. Experimental diabesity research.
  • Low Wang, C.C., et al., 2016. clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation, 133 (24), 2459–2502. doi: 10.1161/CIRCULATIONAHA.116.022194.
  • M, et al., 2001. Disease of the kidney and urinary tract: diabetic nephropathy. 8th ed. Lippincott Williams and Wilkins.
  • Ma, X., et al., 2023. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Renal failure, 45 (1), 2146512. doi: 10.1080/0886022X.2022.2146512.
  • Madsen-Bouterse, S.A., and Kowluru, R.A., 2008. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Reviews in endocrine & metabolic disorders, 9 (4), 315–327. doi: 10.1007/s11154-008-9090-4.
  • Mahajan, N., Arora, P., and Sandhir, R., 2019. Perturbed biochemical pathways and associated oxidative stress lead to vascular dysfunctions in diabetic retinopathy. Oxidative medicine and cellular longevity, 2019, 8458472. doi: 10.1155/2019/8458472.
  • Mahmoodnia, L., et al., 2017. An update on diabetic kidney disease, oxidative stress and antioxidant agents. Journal of renal injury prevention, 6 (2), 153–157. doi: 10.15171/jrip.2017.30.
  • Maitra, A., 2015. Robbins and Cotran pathologic basis of disease. NINTH. APA Citation Kumar, V., Abbas, A. K., & Aster, J. C.
  • Majumdar, P., et al., 2009. Leptin and endothelin-1 mediated increased extracellular matrix protein production and cardiomyocyte hypertrophy in diabetic heart diseas. Diabetes/metabolism research and reviews, 25 (5), 452–463. doi: 10.1002/dmrr.964.
  • Marangon, K., et al., 1999. Comparison of the effect of α-lipoic acid and α-tocopherol supplementation on measures of oxidative stress. Free radical biology & medicine, 27 (9-10), 1114–1121. doi: 10.1016/s0891-5849(99)00155-0.
  • Marrazzo, G., et al., 2014. Role of dietary and endogenous antioxidants in diabetes. Critical reviews in food science and nutrition, 54 (12), 1599–1616. doi: 10.1080/10408398.2011.644874.
  • Matsugo, S., et al., 1996. Reevaluation of superoxide scavenging activity of dihydrolipoic acid and its analogues by chemiluminescent method using 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo-[1,2-a]pyrazine-3-one (MCLA) as a superoxide probe. Biochemical and biophysical research communications, 227 (1), 216–220. doi: 10.1006/bbrc.1996.1492.
  • Mendez, M.M., et al., 2015. Altered glutathione system is associated with the presence of distal symmetric peripheral polyneuropathy in type 2 diabetic subjects. Journal of diabetes and its complications, 29 (7), 923–927. doi: 10.1016/j.jdiacomp.2015.05.023.
  • Menon, V.P., and Sudheer, A.R., 2007. Antioxidant and anti-inflammatory properties of curcumin. Advances in experimental medicine and biology, 595, 105–125. doi: 10.1007/978-0-387-46401-5_3.
  • Miao, F., et al., 2004. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. The journal of biological chemistry, 279 (17), 18091–18097. doi: 10.1074/jbc.M311786200
  • Mizamtsidi, M., et al., 2016. Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? European journal of clinical investigation, 46 (11), 947–953. doi: 10.1111/eci.12673.
  • Mogensen, C.E., and Christensen, C.K., 1984. Predicting diabetic nephropathy in insulin-dependent patients. The new England journal of medicine, 311 (2), 89–93. doi: 10.1056/NEJM198407123110204.
  • Mohamed, Q., Gillies, M.C., and Wong, T.Y., 2007. Management of diabetic retinopathy: A systematic review. Journal of the American medical association.
  • Najafian, B., et al., 2006. Glomerulotubular junction abnormalities are associated with proteinuria in type 1 diabetes. Journal of the American society of nephrology : JASN, 17 (4 Suppl 2), S53–S60. doi: 10.1681/ASN.2005121342.
  • Nangaku, M., 2006. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. Journal of the American society of nephrology : JASN, 17 (1), 17–25. doi: 10.1681/ASN.2005070757.
  • Nasri, H. and Rafieian-Kopaei, M., 2021. Protective effects of herbal antioxidants on diabetic kidney disease - PubMed [online]. Available from: https://pubmed.ncbi.nlm.nih.gov/24672573/ [Accessed 21 Apr 2021].
  • National Diabetes Statistics Report | Diabetes | CDC [online], 2023. Available from: https://www.cdc.gov/diabetes/data/statistics-report/index.html [Accessed 23 May 2023].
  • Nazar, C.M.J., 2014. Diabetic nephropathy; principles of diagnosis and treatment of diabetic kidney disease. Journal of nephropharmacology, 3 (1), 15–20.
  • Negre-Salvayre, A., et al., 2008. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British journal of pharmacology, 153 (1), 6–20. doi: 10.1038/sj.bjp.0707395.
  • Nguyen, T. Q., and Goldschmeding, R., 2018. The mesangial cell in diabetic nephropathy. In: Diabetic nephropathy: pathophysiology and clinical aspects. Springer International Publishing, 143–151.
  • Nioi, P., et al., 2005. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Molecular and cellular biology, 25 (24), 10895–10906. doi: 10.1128/MCB.25.24.10895-10906.2005.
  • Nishikawa, T., et al., 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404 (6779), 787–790. doi: 10.1038/35008121.
  • Nordquist, L., et al., 2015. Activation of hypoxia-inducible factors prevents diabetic nephropathy. Journal of the American society of nephrology : JASN, 26 (2), 328–338. doi: 10.1681/ASN.2013090990.
  • Obrosova, I.G., et al., 2000. Evaluation of alpha1-adrenoceptor antagonist on diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB journal : official publication of the federation of american societies for experimental biology, 14 (11), 1548–1558. doi: 10.1096/fj.14.11.1548.
  • Obrosova, I.G., et al., 2002. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB journal : official publication of the federation of American societies for experimental biology, 16 (1), 123–125. doi: 10.1096/fj.01-0603fje.
  • Obrosova, I.G., et al., 2004. Role of poly(ADP-Ribose) polymerase activation in diabetic neuropathy. Diabetes, 53 (3), 711–720. doi: 10.2337/diabetes.53.3.711.
  • Oshitari, T., 2021a. The pathogenesis and therapeutic approaches of diabetic neuropathy in the retina. International journal of molecular sciences, 22 (16), doi: 10.3390/ijms22169050.
  • Oshitari, T., 2021b. Neurovascular impairment and therapeutic strategies in diabetic retinopathy. International journal of environmental research and public health, 19 (1), doi: 10.3390/ijerph19010439.
  • Oshitari, T., 2022. Diabetic retinopathy: neurovascular disease requiring neuroprotective and regenerative therapies. Neural regeneration research, 17 (4), 795–796. doi: 10.4103/1673-5374.322457.
  • Oshitari, T., 2023. Advanced glycation end-products and diabetic neuropathy of the retina. International journal of molecular sciences, 24 (3), doi: 10.3390/ijms24119166.
  • østerby, R., 1974. Early phases in the development of diabetic glomerulopathy. Acta Medica Scandinavica. Supplementum, 574, 3–82.
  • Oza, M.J., and Kulkarni, Y.A., 2020. Formononetin Ameliorates diabetic neuropathy by increasing expression of SIRT1 and NGF. Chemistry & biodiversity, 17 (6), e2000162. doi: 10.1002/cbdv.202000162.
  • Ozcan, A., and Ogun, M., 2015. Biochemistry of reactive oxygen and nitrogen species. In: Basic principles and clinical significance of oxidative stress. InTech.
  • Packer, L., Witt, E.H., and Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free radical biology & medicine, 19 (2), 227–250. doi: 10.1016/0891-5849(95)00017-r.
  • Palm, F., et al., 2003. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia, 46 (8), 1153–1160. doi: 10.1007/s00125-003-1155-z.
  • Palsamy, P., and Subramanian, S., 2010. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. Journal of cellular physiology, 224 (2), 423–432. doi: 10.1002/jcp.22138.
  • Pang, L., et al., 2020. Understanding diabetic neuropathy: focus on oxidative stress. Oxidative medicine and cellular longevity, 2020, 9524635. doi: 10.1155/2020/9524635.
  • Papadopoulou-Marketou, N., et al., 2018. Diabetic nephropathy in type 1 diabetes. Minerva medica, 109 (3), 218–228. doi: 10.23736/S0026-4806.17.05496-9.
  • Parving, H.H., et al., 1982. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta endocrinologica, 100 (4), 550–555. doi: 10.1530/acta.0.1000550.
  • Pastoriza, S., et al., 2017. Healthy properties of green and white teas: an update. Food & function, 8 (8), 2650–2662. doi: 10.1039/c7fo00611j.
  • Peluso, I., and Serafini, M., 2017. Antioxidants from black and green tea: from dietary modulation of oxidative stress to pharmacological mechanisms. British journal of pharmacology, 174 (11), 1195–1208. doi: 10.1111/bph.13649.
  • Pérez-Morales, R.E., et al., 2019. Inflammation in diabetic kidney disease. Nephron, 143 (1), 12–16. doi: 10.1159/000493278.
  • Petersen, K.F., et al., 2004. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. The new England journal of medicine, 350 (7), 664–671. doi: 10.1056/NEJMoa031314.
  • Pirart, J., 1978. Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973. Diabetes care, 1 (3), 168–188. doi: 10.2337/diacare.1.3.168.
  • PORTH, C. M., n.d. Essentials of pathophysiology:concepts of altered health states: disorders of special sensory function: vision, hearing, and vestibular function. 4th ed. Wolters Kluwer Health | Lippincott Williams & Wilkins.
  • Pourghasem, M., Shafi, H., and Babazadeh, Z., 2015. Histological changes of kidney in diabetic nephropathy. Caspian journal of internal medicine, 6 (3), 120–127.
  • Pradeepa, R., et al., 2008. Prevalence and risk factors for diabetic neuropathy in an urban south Indian population: The Chennai Urban Rural Epidemiology Study (CURES-55). Diabetic medicine : a journal of the British diabetic association, 25 (4), 407–412. doi: 10.1111/j.1464-5491.2008.02397.x.
  • Prasad, P., et al., 2010. Evaluation of renal hypoxia in diabetic mice by bold MRI. Investigative radiology, 45 (12), 819–822. doi: 10.1097/RLI.0b013e3181ec9b02.
  • Pravst, I., Zmitek, K., and Zmitek, J., 2010. Coenzyme Q10 contents in foods and fortification strategies. Critical reviews in food science and nutrition, 50 (4), 269–280. doi: 10.1080/10408390902773037.
  • Prince, C.T., et al., 2010. Cardiovascular autonomic neuropathy, HDL cholesterol, and smoking correlate with arterial stiffness markers determined 18 years later in type 1 diabetes. Diabetes care, 33 (3), 652–657. doi: 10.2337/dc09-1936.
  • Pruijm, M., et al., 2018. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney international, 93 (4), 932–940. doi: 10.1016/j.kint.2017.10.020.
  • Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C., LaMantia, A.-S., McNamara, J.O., and Williams, S.M., eds., 2001. Neuroscience. 2nd ed. Sunderland, MA: Sinauer Associates.
  • Rajbhandari, S.M., and Piya, M.K., 2005. A brief review on the pathogenesis of human diabetic neuropathy: observations and postulations. International journal of diabetes and metabolism,
  • Raman, R., et al., 2021. Diabetic retinopathy screening guidelines in India: all India ophthalmological society diabetic retinopathy task force and vitreoretinal society of india consensus statement. Indian journal of ophthalmology, 69 (3), 678–688. doi: 10.4103/ijo.IJO_667_20.
  • Ramzy, D., et al., 2006. Elevated endothelin-1 levels impair nitric oxide homeostasis through a PKC-dependent pathway. Circulation, 114 (SUPPL. 1), I319–I326. doi: 10.1161/CIRCULATIONAHA.105.001503.
  • Rayman, M.P., 2012. Selenium and human health. Lancet (London, England), 379 (9822), 1256–1268. doi: 10.1016/S0140-6736(11)61452-9.
  • Reddy, M.A., et al., 2002. Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protein expression in mesangial cells. American journal of physiology - renal physiology, 283 (5), 52–55.
  • Reddy, A.C.P., and Lokesh, B.R., 1994. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Molecular and cellular biochemistry, 137 (1), 1–8. doi: 10.1007/BF00926033.
  • Reddy, M.A., Zhang, E., and Natarajan, R., 2015. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 58 (3), 443–455. doi: 10.1007/s00125-014-3462-y.
  • Reidy, K., et al., 2014. Molecular mechanisms of diabetic kidney disease. Journal of clinical investigation, 124 (6), 2333–2340. doi: 10.1172/JCI72271.
  • Resnikoff, S., et al., 2004. Global data on visual impairment in the year 2002. Bulletin of the world health organization, 82 (11), 844–851.
  • Riemer, J., Bulleid, N., and Herrmann, J.M., 2009. Disulfide formation in the ER and mitochondria: two solutions to a common process. Science (New York, N.Y.), 324 (5932), 1284–1287. doi: 10.1126/science.1170653.
  • Rivellese, A.A., Riccardi, G., and Vaccaro, O., 2010. Cardiovascular risk in women with diabetes. Nutrition, metabolism, and cardiovascular diseases : NMCD, 20 (6), 474–480. doi: 10.1016/j.numecd.2010.01.008.
  • Rodewald, R., and Karnovsky, M.J., 1974. Porous substructure of the glomerular slit diaphragm in the rat and mouse. The journal of cell biology, 60 (2), 423–433. doi: 10.1083/jcb.60.2.423.
  • Rodríguez, M.L., et al., 2019. Oxidative stress and microvascular alterations in diabetic retinopathy: future therapies. Oxidative medicine and cellular longevity, 2019, 4940825. doi: 10.1155/2019/4940825.
  • Rolim, L.C., et al., 2008. Diabetic cardiovascular autonomic neuropathy: risk factors, clinical impact and early diagnosis. Arquivos brasileiros de cardiologia, 90 (4), e24–e31. doi: 10.1590/S0066-782X2008000400014.
  • Ronald, A., and Ludwig, E., 2001. Urinary tract infections in adults with diabetes. International journal of antimicrobial agents, 17 (4), 287–292. doi: 10.1016/s0924-8579(00)00356-3.
  • De Rosa, S., et al., 2018. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Frontiers in endocrinology, 9 (JAN), 2. doi: 10.3389/fendo.2018.00002.
  • Rosenberger, C., et al., 2008. Adaptation to hypoxia in the diabetic rat kidney. Kidney international, 73 (1), 34–42. doi: 10.1038/sj.ki.5002567.
  • Rossi, F., and Zatti, M., 1964. Biochemical aspects of phagocytosis in poly-morphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells. Experientia, 20 (1), 21–23. doi: 10.1007/BF02146019.
  • Roy, S., et al., 2010. Vascular basement membrane thickening in diabetic retinopathy. Current eye research, 35 (12), 1045–1056. doi: 10.3109/02713683.2010.514659.
  • Sagoo, M.K., and Gnudi, L., 2018. Diabetic nephropathy: Is there a role for oxidative stress? Free radical biology & medicine, 116, 50–63. doi: 10.1016/j.freeradbiomed.2017.12.040.
  • Said, G., 2007. Diabetic neuropathy - a review. Nature clinical practice. Neurology, 3 (6), 331–340. doi: 10.1038/ncpneuro0504.
  • Saini, R., 2011. Coenzyme Q10: the essential nutrient. Journal of pharmacy & bioallied sciences, 3 (3), 466–467. doi: 10.4103/0975-7406.84471.
  • Salehi, B., et al., 2019. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules, 9 (8), doi: 10.3390/biom9080356.
  • Salifu, M.O., et al., 2005. Challenges in the diagnosis and management of renal artery stenosis. Current hypertension reports, 7 (3), 219–227. doi: 10.1007/s11906-005-0014-3.
  • Salviati, A., Burlina, A.P., and Borsini, W., 2010. Nervous system and Fabry disease, from symptoms to diagnosis: damage evaluation and follow-up in adult patients, enzyme replacement, and support therapy. Neurological sciences, 31 (3), 299–306. doi: 10.1007/s10072-009-0211-y.
  • Sayeski, P.P., and Kudlow, J.E., 1996. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-α gene transcription. The journal of biological chemistry, 271 (25), 15237–15243. doi: 10.1074/jbc.271.25.15237.
  • Schleicher, E.D., Wagner, E., and Nerlich, A.G., 1997. Increased accumulation of the glycoxidation product N(ε)- (carboxymethyl)lysine in human tissues in diabetes and aging. The journal of clinical investigation, 99 (3), 457–468. doi: 10.1172/JCI119180.
  • Schlöndorff, D., and Banas, B., 2009. The mesangial cell revisited: No cell is an island. Journal of the American society of nephrology,
  • Schmidt, E.E., 2015. Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochemical society transactions, 43 (4), 632–638. doi: 10.1042/BST20150021.
  • Schröder, K., 2019. NADPH oxidase-derived reactive oxygen species: Dosis facit venenum. Experimental physiology, 104 (4), 447–452. doi: 10.1113/EP087125.
  • Scivittaro, V., Ganz, M.B., and Weiss, M.F., 2000. AGEs induce oxidative stress and activate protein kinase C-β(II) in neonatal mesangial cells. American journal of physiology - renal physiology, 278 (4), 47–4.
  • Sekido, H., et al., 2004. Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochemical and biophysical research communications, 320 (1), 241–248. doi: 10.1016/j.bbrc.2004.05.159.
  • Shakeel, M., 2015. Recent advances in understanding the role of oxidative stress in diabetic neuropathy. Diabetes & metabolic syndrome, 9 (4), 373–378. doi: 10.1016/j.dsx.2014.04.029.
  • Sharma, K., 2015. Mitochondrial hormesis and diabetic complications. Diabetes, 64 (3), 663–672. doi: 10.2337/db14-0874.
  • Sharma, S., et al., 2006. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology, 76 (2), 69–75. doi: 10.1159/000089720.
  • Shay, K.P., et al., 2009. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochimica et biophysica acta - general subjects,
  • Shen, X., et al., 2006. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes, 55 (3), 798–805. doi: 10.2337/diabetes.55.03.06.db05-1039.
  • Shields, J., and Maxwell, A.P., 2010. Managing diabetic nephropathy. Clinical medicine (London, England), 10 (5), 500–504. doi: 10.7861/clinmedicine.10-5-500.
  • Shoelson, S.E., Lee, J., and Goldfine, A.B., 2006. Inflammation and insulin resistance. The journal of clinical investigation, 116 (7), 1793–1801. doi: 10.1172/JCI29069.
  • Signorini, L., et al., 2017. Naturally occurring compounds: New potential weapons against oxidative stress in chronic kidney disease. International journal of molecular sciences, 18 (7), doi: 10.3390/ijms18071481.
  • Simó, R., Stitt, A.W., and Gardner, T.W., 2018. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia, 61 (9), 1902–1912. doi: 10.1007/s00125-018-4692-1.
  • Simó-Servat, O., Hernández, C., and Simó, R., 2019. Diabetic retinopathy in the context of patients with diabetes. Ophthalmic research, 62 (4), 211–217. doi: 10.1159/000499541.
  • Skulachev, V.P., et al., 2009. An attempt to prevent senescence: a mitochondrial approach. Biochimica et biophysica acta - bioenergetics,
  • Solomon, S.D., et al., 2017. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes care, 40 (3), 412–418. doi: 10.2337/dc16-2641.
  • Solomons, N.W., 2001. Dietary sources of zinc and factors affecting its bioavailability. Food and nutrition bulletin, 22 (2), 138–154. doi: 10.1177/156482650102200204.
  • Somboonwong, J., et al., 2016. Minimization of the risk of diabetic microangiopathy in rats by Nigella sativa. Pharmacognosy magazine, 12 (Suppl 2), S175–S180. doi: 10.4103/0973-1296.182169.
  • Soufi, F.G., Mohammad-nejad, D., and Ahmadieh, H., 2012. Resveratrol improves diabetic retinopathy possibly through oxidative stress - nuclear factor κB - apoptosis pathway. Pharmacological reports : PR, 64 (6), 1505–1514. doi: 10.1016/s1734-1140(12)70948-9.
  • Steffes, M.W., et al., 2001. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney international, 59 (6), 2104–2113. doi: 10.1046/j.1523-1755.2001.00725.x.
  • Stevens, M.J., et al., 2000. Effects of DL-α-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes, 49 (6), 1006–1015. doi: 10.2337/diabetes.49.6.1006.
  • Stout, L.C., Kumar, S., and Whorton, E.B., 1994. Insudative lesions-their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Human pathology, 25 (11), 1213–1227. doi: 10.1016/0046-8177(94)90039-6.
  • Sugiyama, K., et al., 2020. Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease. Nephrology, dialysis, transplantation : official publication of the European dialysis and transplant association - European renal association, 35 (6), 964–970. doi: 10.1093/ndt/gfy324.
  • Sun, G., et al., 2010. Epigenetic histone methylation modulates fibrotic gene expression. Journal of the American society of nephrology : JASN, 21 (12), 2069–2080. doi: 10.1681/ASN.2010060633.
  • Tagawa, A., et al., 2016. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes, 65 (3), 755–767. doi: 10.2337/db15-0473.
  • Tavafi, M., 2013a. Diabetic nephropathy and antioxidants. Journal of nephropathology, 2 (1), 20–27. doi: 10.5812/nephropathol.9093.
  • Tavafi, M., 2013b. Complexity of diabetic nephropathy pathogenesis and design of investigations. Journal of renal injury prevention, 2 (2), 59–62.
  • Tesfamariam, B., 1994. Free radicals in diabetic endothelial cell dysfunction. Free radical biology & medicine, 16 (3), 383–391. doi: 10.1016/0891-5849(94)90040-x.
  • Tesfaye, S., et al., 2005. Vascular risk factors and diabetic neuropathy. The new England journal of medicine, 352 (4), 341–350. doi: 10.1056/NEJMoa032782.
  • Tezel, G., Luo, C., and Yang, X., 2007. Accelerated aging in glaucoma: Immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Investigative ophthalmology & visual science, 48 (3), 1201–1211. doi: 10.1167/iovs.06-0737.
  • Thomas, M.C., 2016. Epigenetic mechanisms in diabetic kidney disease. Current diabetes reports, 16 (3), 31. doi: 10.1007/s11892-016-0723-9.
  • Tian, R., et al., 2016. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. European journal of pharmacology, 771, 84–92. doi: 10.1016/j.ejphar.2015.12.021.
  • Tisi, A., et al., 2021. The impact of oxidative stress on blood-retinal barrier physiology in age-related macular degeneration. Cells, 10 (1), doi: 10.3390/cells10010064.
  • Tong, K.I., et al., 2006. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biological chemistry, 387 (10-11), 1311–1320. doi: 10.1515/BC.2006.164.
  • Tonna, S., et al., 2010. Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nature reviews. nephrology, 6 (6), 332–341. doi: 10.1038/nrneph.2010.55.
  • Tonneijck, L., et al., 2017. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. Journal of the American society of nephrology : JASN, 28 (4), 1023–1039. doi: 10.1681/ASN.2016060666.
  • Tracy, J.A., and Dyck, P.J.B., 2008. The spectrum of diabetic neuropathies. Physical medicine and rehabilitation clinics of North America, 19 (1), 1–26, v. doi: 10.1016/j.pmr.2007.10.010.
  • Trost, A., et al., 2016. Brain and retinal pericytes: origin, function and role. Frontiers in cellular neuroscience, 10, 20. doi: 10.3389/fncel.2016.00020.
  • Tuttle, K.R., 2017. Back to the future: glomerular hyperfiltration and the diabetic kidney. Diabetes, 66 (1), 14–16. doi: 10.2337/dbi16-0056.
  • Umeno, A., et al., 2016. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules (Basel, Switzerland), 21 (6), doi: 10.3390/molecules21060708.
  • Uzar, E., et al., 2012. Serum prolidase activity and oxidative status in patients with diabetic neuropathy. Neurological sciences : official journal of the Italian neurological society and of the Italian society of clinical neurophysiology, 33 (4), 875–880. doi: 10.1007/s10072-011-0857-0.
  • Vallon, V., and Komers, R., 2011. Pathophysiology of the diabetic kidney. Comprehensive physiology, 1 (3), 1175–1232. doi: 10.1002/cphy.c100049.
  • Varma, V., et al., 2014. Correlation of vitamin C with HbA1c and oxidative stress in diabetes mellitus with or without nephropathy. National journal of medical research, 4 (2), 151–155.
  • Veves, A., and King, G.L., 2001. Can VEGF reverse diabetic neuropathy in human subjects? Journal of clinical investigation, 107 (10), 1215–1218. doi: 10.1172/JCI13038.
  • Viberti, G.C., et al., 1982. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet (London, England), 1 (8287), 1430–1432. doi: 10.1016/s0140-6736(82)92450-3.
  • Vicenová, B., et al., 2009. Emerging role of interleukin-1 in cardiovascular diseases. Physiological research, 58 (4), 481–498. doi: 10.33549/physiolres.931673.
  • Villeneuve, L.M., and Natarajan, R., 2010. The role of epigenetics in the pathology of diabetic complications. American journal of physiology - renal physiology, 299 (1), 14–25.
  • Vincent, A.M., Brownlee, M., and Russell, J.W., 2002. Oxidative stress and programmed cell death in diabetic neuropathy. Annals of the New York academy of sciences, 959, 368–383. doi: 10.1111/j.1749-6632.2002.tb02108.x.
  • Walker, R., and Rodgers, J., 2002. Diabetic retinopathy. Nursing standard (royal college of nursing (Great Britain) : 1987), ), 16 (45), 46–52. doi: 10.7748/ns2002.07.16.45.46.c3238.
  • Wang, N., et al., 2017. Supplementation of micronutrient selenium in metabolic diseases: Its role as an antioxidant. Oxidative medicine and cellular longevity, 2017, 7478523. doi: 10.1155/2017/7478523.
  • Wang, X., et al., 2002. Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: caspase activation and oxidative stress. Stroke, 33 (7), 1882–1888. doi: 10.1161/01.str.0000020121.41527.5d.
  • Wang, W., and Lo, A.C.Y., 2018. Diabetic retinopathy: pathophysiology and treatments. International journal of molecular sciences, 19 (6), doi: 10.3390/ijms19061816.
  • White, K.E., et al., 2002. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes, 51 (10), 3083–3089. doi: 10.2337/diabetes.51.10.3083.
  • Williams, B., et al., 1997. Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes, 46 (9), 1497–1503. doi: 10.2337/diab.46.9.1497.
  • Wold, L.E., et al., 2003. Insulin-like growth factor I (IGF-1) supplementation prevents diabetes-induced alterations in coenzymes Q9 and Q10. Acta Diabetologica, 40 (2), 85–90. doi: 10.1007/s005920300010.
  • Woods, M., et al., 1999. Endothelin-1 is induced by cytokines in human vascular smooth muscle cells: evidence for intracellular endothelin-converting enzyme. Molecular pharmacology, 55 (5), 902–909.
  • Xing, L., et al., 2019. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. Journal of agricultural and food chemistry, 67 (4), 1029–1043. doi: 10.1021/acs.jafc.8b06146.
  • Xu, Z., et al., 2014. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia, 57 (1), 204–213. doi: 10.1007/s00125-013-3093-8.
  • Yamashita, S., and Yamamoto, Y., 1997. Simultaneous detection of ubiquinol and ubiquinone in human plasma as a marker of oxidative stress. Analytical biochemistry, 250 (1), 66–73. doi: 10.1006/abio.1997.2187.
  • Yang, S., et al., 2019. Sugar alcohols of polyol pathway serve as alarmins to mediate local-systemic innate immune communication in Drosophila. Cell host & microbe, 26 (2), 240–251.e8. doi: 10.1016/j.chom.2019.07.001.
  • Ye, G., et al., 2004. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes, 53 (5), 1336–1343. doi: 10.2337/diabetes.53.5.1336.
  • Yerra, V.G., Kalvala, A.K., and Kumar, A., 2017. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. The journal of nutritional biochemistry, 47, 41–52. doi: 10.1016/j.jnutbio.2017.05.001.
  • Yerramothu, P., Vijay, A.K., and Willcox, M.D.P., 2018. Inflammasomes, the eye and anti-inflammasome therapy. Eye (Eye), 32 (3), 491–505. doi: 10.1038/eye.2017.241.
  • Yorek, M., 2008. The potential role of angiotensin converting enzyme and vasopeptidase inhibitors in the treatment of diabetic neuropathy. Current drug targets, 9 (1), 77–84. doi: 10.2174/138945008783431736.
  • Yu, S.W., et al., 2002. Mediation of poty(ADP-ribose) polymerase-1 - dependent cell death by apoptosis-inducing factor. Science (New York, N.Y.), 297 (5579), 259–263. doi: 10.1126/science.1072221.
  • Yuan, H., et al., 2016. Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antioxidants & redox signaling, 24 (7), 361–375. doi: 10.1089/ars.2015.6372.
  • Yuan, T., et al., 2019. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox biology, 20, 247–260. doi: 10.1016/j.redox.2018.09.025.
  • Zhang, C., et al., 2014. Protective factors in diabetic retinopathy: focus on blood-retinal barrier. Discovery medicine, 18 (98), 105–112.
  • Zhang, Y., et al., 2020. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nature reviews. Cardiology, 17 (3), 170–194. doi: 10.1038/s41569-019-0260-8.
  • Zheng, X., et al., 2013. Protective effects of chronic resveratrol treatment on vascular inflammatory injury in steptozotocin-induced type 2 diabetic rats: role of NF-kappa B signaling. European journal of pharmacology, 720 (1–3), 147–157. doi: 10.1016/j.ejphar.2013.10.034.
  • Zheng, Y., He, M., and Congdon, N., 2012. The worldwide epidemic of diabetic retinopathy. Indian journal of ophthalmology, 60 (5), 428–431. doi: 10.4103/0301-4738.100542.
  • Ziegler, D., et al., 1992. Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabetic medicine: a journal of the British diabetic association, 9 (2), 166–175. doi: 10.1111/j.1464-5491.1992.tb01754.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.