41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A molecular and computational study of galbanic acid as a regulator of Sirtuin1 pathway in inhibiting lipid accumulation in HepG2 cells

, , , , ORCID Icon & ORCID Icon
Received 11 Oct 2023, Accepted 26 Mar 2024, Published online: 07 May 2024

References

  • Afzaal, A., et al., 2022. Versatile role of sirtuins in metabolic disorders: from modulation of mitochondrial function to therapeutic interventions. Journal of biochemical and molecular toxicology, 36 (7), e23047. doi: 10.1002/jbt.23047.
  • Amalraj, A. and Gopi, S., 2017. Biological activities and medicinal properties of asafoetida: a review. Journal of traditional and complementary medicine, 7 (3), 347–359. doi: 10.1016/j.jtcme.2016.11.004.
  • Avilkina, V., Chauveau, C., and Mhenni, O.G., 2022. Sirtuin function and metabolism: role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis. Bone, 154, 116232. doi: 10.1016/j.bone.2021.116232.
  • Azminah, A., et al., 2019. In silico and in vitro identification of candidate SIRT1 activators from Indonesian medicinal plants compounds database. Computational biology and chemistry, 83, 107096. doi: 10.1016/j.compbiolchem.2019.107096.
  • Bakhshandeh, N., et al., 2022. Increased expression of androgen receptor and PSA genes in LNCaP (prostate cancer) cell line due to high concentrations of EGCG, an active ingredient in green tea. Hormone molecular biology and clinical investigation, 44 (2), 181–186. doi: 10.1515/hmbci-2022-0054.
  • Bitencourt-Ferreira, G. and Azevedo, W.F.D., 2019. Molegro Virtual Docker for docking. Methods in Molecular Biology, 2053, 149–167. doi: 10.1007/978-1-4939-9752-7_10.
  • Brooks, B.R., et al., 2009. CHARMM: the biomolecular simulation program. Journal of computational chemistry, 30 (10), 1545–1614. doi: 10.1002/jcc.21287.
  • Curtis, W.M., et al., 2022. NADPH and mitochondrial quality control as targets for a circadian-based fasting and exercise therapy for the treatment of Parkinson’s disease. Cells, 11 (15), 2416. doi: 10.3390/cells11152416.
  • Dai, H., et al., 2010. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. Journal of biological chemistry, 285 (43), 32695–32703. doi: 10.1074/jbc.M110.133892.
  • Dao, T.-T., et al., 2012. Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima. Journal of natural products, 75 (7), 1332–1338. doi: 10.1021/np300258u.
  • De Gregorio, E., et al., 2020. Relevance of SIRT1–NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. International journal of molecular sciences, 21 (11), 3858. doi: 10.3390/ijms21113858.
  • Ezhilarasan, D. and Najimi, M., 2021. Role of sirtuins in liver diseases. In: Sirtuin biology in medicine (pp. 329–340). Academic Press. doi: 10.1016/B978-0-12-814118-2.00005-7.
  • Fernández-Quintela, A., et al., 2017. Antiobesity effects of resveratrol: which tissues are involved? Annals of the New York academy of sciences, 1403 (1), 118–131. doi: 10.1111/nyas.13413.
  • Gliszczyńska, A. and Brodelius, P.E., 2012. Sesquiterpene coumarins. Phytochemistry reviews, 11 (1), 77–96. doi: 10.1007/s11101-011-9220-6.
  • Huang, J. and MacKerell, A.D., Jr., 2013. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of computational chemistry, 34 (25), 2135–2145. doi: 10.1002/jcc.23354.
  • Kim, S., et al., 2016. PubChem substance and compound databases. Nucleic acids research, 44 (D1), D1202–D1213. doi: 10.1093/nar/gkv951.
  • Kim, S.C., et al., 2015. Fisetin induces Sirt1 expression while inhibiting early adipogenesis in 3T3-L1 cells. Biochemical and biophysical research communications, 506 (1), 306–644. doi: 10.1016/j.bbrc.2018.10.068.
  • Kouranov, A., et al., 2006. The RCSB PDB information portal for structural genomics. Nucleic acids research, 34 (Database issue), D302–D305. doi: 10.1093/nar/gkj120.
  • Lee, D.E., et al., 2019. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation. Nutrients, 11 (11), 2702. doi: 10.3390/nu11112702.
  • Lindahl, Abraham, Hess, Spoel, V.D., 2020. GROMACS 2020.1 source code. Zenodo. doi: 10.5281/zenodo.3685919.
  • Mahita, J. and Sowdhamini, R., 2018. Investigating the effect of key mutations on the conformational dynamics of toll-like receptor dimers through molecular dynamics simulations and protein structure networks. Proteins, 86 (4), 475–490. doi: 10.1002/prot.25467.
  • Musavi, H., et al., 2023. Galbanic acid of Ferula assa-foetida L, as a regulator of the AMPK pathway in reduction of lipid accumulation in HepG2 cells. Immunopathologia persa, 9 (2), 39479.
  • Namvarjah, F., et al., 2022. Chlorogenic acid improves anti-lipogenic activity of metformin by positive regulating of AMPK signaling in HepG2 cells. Cell biochemistry and biophysics, 80 (3), 537–545. doi: 10.1007/s12013-022-01077-1.
  • Park, S.-J., et al., 2012. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 148 (3), 421–433. doi: 10.1016/j.cell.2012.01.017.
  • Peng, Z., et al., 2018. Nobiletin alleviates palmitic acid‑induced NLRP3 inflammasome activation in a sirtuin 1‑dependent manner in AML‑12 cells. Molecular medicine reports, 18 (6), 5815–5822. doi: 10.3892/mmr.2018.9615.
  • Risitano, R., et al., 2014. Flavonoid fraction of bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLOS one, 9 (9), e107431. doi: 10.1371/journal.pone.0107431.
  • Sadeghkhani, F., Hajihassan, Z., and Gharaghani, S., 2022. Identification of new potent agonists for toll-like receptor 8 by virtual screening methods, molecular dynamics simulation, and MM-GBSA. Journal of biomolecular structure & dynamics, 41 (19), 10026–10036. doi: 10.1080/07391102.2022.2152368.
  • Sanner, M. F., Stoffler, D., and Olson, A.J., 2002. ViPEr, a visual programming environment for Python. In: Proceedings of the 10th international python conference, Jaiper, India, 13–15 October 2017. 103–115.
  • Sayed, A.M., et al., 2020. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life sciences, 259, 118173. doi: 10.1016/j.lfs.2020.118173.
  • Shentu, T.-P., et al., 2016. AMP-activated protein kinase and sirtuin 1 coregulation of cortactin contributes to endothelial function. Arteriosclerosis, thrombosis, and vascular biology, 36 (12), 2358–2368. doi: 10.1161/ATVBAHA.116.307871.
  • Sonigra, P. and Meena, M., 2020. Metabolic profile, bioactivities, and variations in the chemical constituents of essential oils of the Ferula genus (Apiaceae). Frontiers in pharmacology, 11, 608649. doi: 10.3389/fphar.2020.608649.
  • Sun, Y., et al., 2018. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. British journal of pharmacology, 175 (2), 374–387. doi: 10.1111/bph.14079.
  • Trott, O. and Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31 (2), 455–461. doi: 10.1002/jcc.21334.
  • Vanommeslaeghe, K., et al., 2010. CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. Journal of computational chemistry, 31 (4), 671–690. doi: 10.1002/jcc.21367.
  • Wang, G.-L., et al., 2009. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1–FOXO1 signaling pathway. Biochemical and biophysical research communications, 380 (3), 644–649. doi: 10.1016/j.bbrc.2009.01.163.
  • Wang, X., et al., 2022. Molecular dynamics simulations reveal the selectivity mechanism of structurally similar agonists to TLR7 and TLR8. PLOS one, 17 (4), e0260565. doi: 10.1371/journal.pone.0260565.
  • Wu, Y., et al., 2020. A review on anti-tumor mechanisms of coumarins. Frontiers in oncology, 10, 592853. doi: 10.3389/fonc.2020.592853.
  • Yamazaki, Y., et al., 2009. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. American journal of physiology. Endocrinology and metabolism, 297 (5), E1179–E1186. doi: 10.1152/ajpendo.90997.2008.
  • Ye, Y., et al., 2022. Water extract of Ferula lehmanni Boiss. prevents high-fat diet-induced overweight and liver injury by modulating the intestinal microbiota in mice. Food & function, 13 (3), 1603–1616. doi: 10.1039/d1fo03518e.
  • Yu, N.-D., et al., 2022. A novel mechanism for SIRT1 activators that does not rely on the chemical moiety immediately C-terminal to the acetyl-lysine of the substrate. Molecules, 27 (9), 2714. doi: 10.3390/molecules27092714.
  • Yu, W., et al., 2012. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of computational chemistry, 33 (31), 2451–2468. doi: 10.1002/jcc.23067.
  • Zeng, C. and Chen, M., 2022. Progress in nonalcoholic fatty liver disease: SIRT family regulates mitochondrial biogenesis. Biomolecules, 12 (8), 1079. doi: 10.3390/biom12081079.
  • Zia, A., et al., 2021. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. International journal of biological macromolecules, 188, 52–61. doi: 10.1016/j.ijbiomac.2021.08.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.