0
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Salvianolic acid B improves diabetic skin wound repair through Pink1/Parkin-mediated mitophagy

, , , , , , , , , , & show all
Received 29 Aug 2023, Accepted 28 Jul 2024, Published online: 05 Aug 2024

References

  • Abd-Elazem, I.S., et al., 2002. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antiviral research, 55 (1), 91–106. doi:10.1016/s0166-3542(02)00011-6.
  • An, R., et al., 2020. Adipose stem cells isolated from diabetic mice improve cutaneous wound healing in streptozotocin-induced diabetic mice. Stem cell research & therapy, 11 (1), 120. doi:10.1186/s13287-020-01621-x.
  • Atiyeh, B.S., Dibo, S.A., and Hayek, S.N., 2009. Wound cleansing, topical antiseptics and wound healing. International wound journal, 6 (6), 420–430. doi:10.1111/j.1742-481X.2009.00639.x.
  • Chang, X., et al., 2022a. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism: clinical and experimental, 137, 155313. doi:10.1016/j.metabol.2022.155313.
  • Chang, X., et al., 2023. Molecular Mechanisms of Mitochondrial Quality Control in Ischemic Cardiomyopathy. International journal of biological sciences, 19 (2), 426–448. doi:10.7150/ijbs.76223.
  • Chang, X., et al., 2022b. Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance. EBioMedicine, 84, 104260. doi:10.1016/j.ebiom.2022.104260.
  • Demyanenko, I.A., et al., 2017. Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice. Oxidative medicine and cellular longevity, 2017, 6408278–10. doi:10.1155/2017/6408278.
  • Gelmetti, V., et al., 2017. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 13 (4), 654–669. doi:10.1080/15548627.2016.1277309.
  • Guo, W., et al., 2020. Low-concentration DMSO accelerates skin wound healing by Akt/mTOR-mediated cell proliferation and migration in diabetic mice. British journal of pharmacology, 177 (14), 3327–3341. doi:10.1111/bph.15052.
  • He, F., et al., 2021. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. The journal of experimental medicine, 218 (3), e20201416. doi:10.1084/jem.20201416.
  • Hu, Y., et al., 2020. Salvianolic acid B alleviates myocardial ischemic injury by promoting mitophagy and inhibiting activation of the NLRP3 inflammasome. Molecular medicine reports, 22 (6), 5199–5208. doi:10.3892/mmr.2020.11589.
  • Huang, M.Q., et al., 2016. Salvianolic Acid B Ameliorates Hyperglycemia and Dyslipidemia in db/db Mice through the AMPK Pathway. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 40 (5), 933–943. doi:10.1159/000453151.
  • Huttunen, S., et al., 2016. Novel anti-infective potential of salvianolic acid B against human serious pathogen Neisseria meningitidis. BMC research notes, 9 (1), 25. doi:10.1186/s13104-016-1838-4.
  • Ko, Y.S., et al., 2020. Salvianolic acid B protects against oxLDL-induced endothelial dysfunction under high-glucose conditions by downregulating ROCK1-mediated mitophagy and apoptosis. Biochemical pharmacology, 174, 113815. doi:10.1016/j.bcp.2020.113815.
  • Kunkemoeller, B., et al., 2019. Elevated Thrombospondin 2 Contributes to Delayed Wound Healing in Diabetes. Diabetes, 68 (10), 2016–2023. doi:10.2337/db18-1001.
  • Li, J., et al., 2021. Omics and Transgenic Analyses Reveal that Salvianolic Acid B Exhibits its Anti-Inflammatory Effects through Inhibiting the Mincle-Syk-Related Pathway in Macrophages. Journal of proteome research, 20 (7), 3734–3748. doi:10.1021/acs.jproteome.1c00325.
  • Li, L., et al., 2020. Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food & function, 11 (10), 8743–8756. doi:10.1039/d0fo01116a.
  • Lim, J.Z., Ng, N.S., and Thomas, C., 2017. Prevention and treatment of diabetic foot ulcers. Journal of the royal society of medicine, 110 (3), 104–109. doi:10.1177/0141076816688346.
  • Liu, J., et al., 2021a. Salvianolic acid B ameliorates vascular endothelial dysfunction through influencing a bone morphogenetic protein 4-ROS cycle in diabetic mice. Life sciences, 286, 120039. doi:10.1016/j.lfs.2021.120039.
  • Liu, M., et al., 2023. Recent advances in nano-drug delivery systems for the treatment of diabetic wound healing. International journal of nanomedicine, 18, 1537–1560. doi:10.2147/IJN.S395438.
  • Liu, P., et al., 2021b. Protective effect of mitophagy against aluminum-induced MC3T3-E1 cells dysfunction. Chemosphere, 282, 131086. doi:10.1016/j.chemosphere.2021.131086.
  • Mariana, M., and Cairrao, E., 2023. The relationship between phthalates and diabetes: a review. Metabolites, 13 (6), 746. doi:10.3390/metabo13060746.
  • Nguyen, V.T., et al., 2020. Cutaneous wound healing in diabetic mice is improved by topical mineralocorticoid receptor blockade. The journal of investigative dermatology, 140 (1), 223–234.e7. doi:10.1016/j.jid.2019.04.030.
  • Okonkwo, U.A., and Dipietro, L.A., 2017. Diabetes and wound angiogenesis. International journal of molecular sciences, 18 (7), 1419. doi:10.3390/ijms18071419.
  • Pan, Y., et al., 2018. Salvianolic acid B improves mitochondrial function in 3T3-L1 adipocytes through a pathway involving PPARγ Coactivator-1α (PGC-1α). Frontiers in pharmacology, 9, 671. doi:10.3389/fphar.2018.00671.
  • Rahman, M.S., and Kim, Y.S., 2020. PINK1-PRKN mitophagy suppression by mangiferin promotes a brown-fat-phenotype via PKA-p38 MAPK signalling in murine C3H10T1/2 mesenchymal stem cells. Metabolism: clinical and experimental, 107, 154228. doi:10.1016/j.metabol.2020.154228.
  • Ramachandra, C.J.A., et al., 2020. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine, 57, 102884. doi:10.1016/j.ebiom.2020.102884.
  • Ren, Y., et al., 2016. Salvianolic acid B improves vascular endothelial function in diabetic rats with blood glucose fluctuations via suppression of endothelial cell apoptosis. European journal of pharmacology, 791, 308–315. doi:10.1016/j.ejphar.2016.09.014.
  • Sánchez-Maldonado, A.F., Schieber, A., and Gänzle, M.G., 2011. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. Journal of applied microbiology, 111 (5), 1176–1184. doi:10.1111/j.1365-2672.2011.05141.x.
  • Shi, Y., et al., 2020. Salvianolic acid B improved insulin resistance through suppression of hepatic ER stress in ob/ob mice. Biochemical and biophysical research communications, 526 (3), 733–737. doi:10.1016/j.bbrc.2020.03.124.
  • Singh, A., et al., 2021. Salvianolic acid B noncovalently interacts with disordered c-Myc: a computational and spectroscopic-based study. Future medicinal chemistry, 13 (16), 1341–1352. doi:10.4155/fmc-2021-0087.
  • Sivan-Loukianova, E., et al., 2003. CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. Journal of vascular research, 40 (4), 368–377. doi:10.1159/000072701.
  • Sun, D., et al., 2022. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis, 25 (3), 307–329. doi:10.1007/s10456-022-09835-8.
  • Sun, J.M., et al., 2021. Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem cell research & therapy, 12 (1), 507. doi:10.1186/s13287-021-02575-4.
  • Tan, F.H.P., et al., 2021. Alleviatory effects of Danshen, Salvianolic acid A and Salvianolic acid B on PC12 neuronal cells and Drosophila melanogaster model of Alzheimer’s disease. Journal of ethnopharmacology, 279, 114389. doi:10.1016/j.jep.2021.114389.
  • Tong, M., et al., 2019. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circulation research, 124 (9), 1360–1371. doi:10.1161/CIRCRESAHA.118.314607.
  • Wang, C., et al., 2019a. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics, 9 (1), 65–76. doi:10.7150/thno.29766.
  • Wang, M., et al., 2019b. Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS nano, 13 (9), 10279–10293. doi:10.1021/acsnano.9b03656.
  • Wang, Q.Q., et al., 2019c. Salvianolic acid B inhibits the development of diabetic peripheral neuropathy by suppressing autophagy and apoptosis. The journal of pharmacy and pharmacology, 71 (3), 417–428. doi:10.1111/jphp.13044.
  • Wu, H., et al., 2019. Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy, 15 (11), 1882–1898. doi:10.1080/15548627.2019.1596482.
  • Xiang, J., et al., 2022. Salvianolic acid B alleviates diabetic endothelial and mitochondrial dysfunction by down-regulating apoptosis and mitophagy of endothelial cells. Bioengineered, 13 (2), 3486–3502. doi:10.1080/21655979.2022.2026552.
  • Yan, C., et al., 2020. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy, 16 (3), 419–434. doi:10.1080/15548627.2019.1628520.
  • Yang, Y.Y., et al., 2019. Diabetes aggravates renal ischemia-reperfusion injury by repressing mitochondrial function and PINK1/Parkin-mediated mitophagy. American journal of physiology. renal physiology, 317 (4), F852–f864. doi:10.1152/ajprenal.00181.2019.
  • Yu, S., et al., 2020. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation. The international journal of biochemistry & cell biology, 122, 105720. doi:10.1016/j.biocel.2020.105720.
  • Zhang, F.X., et al., 2022. Dissection of the potential anti-diabetes mechanism of salvianolic acid B by metabolite profiling and network pharmacology. Rapid communications in mass spectrometry: RCM, 36 (1), e9205. doi:10.1002/rcm.9205.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.