0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Growth, fusion and degradation of lipid droplets: advances in lipid droplet regulatory protein

, , , , , , & show all
Received 26 Apr 2024, Accepted 28 Jul 2024, Published online: 08 Aug 2024

References

  • Adeyo, O., et al., 2011. The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. The journal of cell biology, 192 (6), 1043–1055. doi: 10.1083/jcb.201010111.
  • An, H., et al., 2019. Stomatin plays a suppressor role in non-small cell lung cancer metastasis. Chinese journal of cancer research = Chung-Kuo Yen Cheng Yen Chiu, 31 (6), 930–944. doi: 10.21147/j.issn.1000-9604.2019.06.09.
  • Andrejeva, G., et al., 2020. De novo phosphatidylcholine synthesis is required for autophagosome membrane formation and maintenance during autophagy. Autophagy, 16 (6), 1044–1060. doi: 10.1080/15548627.2019.1659608.
  • Argov-Argaman, N., 2019. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. Journal of dairy science, 102 (3), 2783–2795. doi: 10.3168/jds.2018-15240.
  • Baerga, R., et al., 2009. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy, 5 (8), 1118–1130. doi: 10.4161/auto.5.8.9991.
  • Barneda, D., et al., 2013. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues. Biochimica et biophysica acta, 1831 (5), 924–933. doi: 10.1016/j.bbalip.2013.01.015.
  • Bekbulat, F., et al., 2020. RAB18 loss interferes with lipid droplet catabolism and provokes autophagy network adaptations. Journal of molecular biology, 432 (4), 1216–1234. doi: 10.1016/j.jmb.2019.12.031.
  • Bitman, J., and Wood, D.L., 1990. Changes in milk fat phospholipids during lactation. Journal of dairy science, 73 (5), 1208–1216. doi: 10.3168/jds.S0022-0302(90)78784-X.
  • Blanchette-Mackie, E.J., et al., 1995. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. Journal of lipid research, 36 (6), 1211–1226. doi: 10.1016/S0022-2275(20)41129-0.
  • Brasaemle, D.L., et al., 2004. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. The journal of biological chemistry, 279 (45), 46835–46842. doi: 10.1074/jbc.M409340200.
  • Brink, L.R., and Lonnerdal, B., 2020. Milk fat globule membrane: the role of its various components in infant health and development. The journal of nutritional biochemistry, 85, 108465. doi: 10.1016/j.jnutbio.2020.108465.
  • Brukman, N.G., et al., 2019. How cells fuse. The journal of cell biology, 218 (5), 1436–1451. doi: 10.1083/jcb.201901017.
  • Cavaletto, M., et al., 2022. The immunological role of milk fat globule membrane. Nutrients, 14 (21), 4574. doi: 10.3390/nu14214574.
  • Chen, F.J., et al., 2020. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic (Copenhagen, Denmark), 21 (1), 94–105. doi: 10.1111/tra.12717.
  • Christianson, J.L., et al., 2010. Identification of the lipid droplet targeting domain of the Cidea protein. Journal of lipid research, 51 (12), 3455–3462. doi: 10.1194/jlr.M009498.
  • Cohen, B.C., et al., 2017. Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism. Journal of mammary gland biology and neoplasia, 22 (4), 235–249. doi: 10.1007/s10911-017-9386-7.
  • Cohen, B.C., et al., 2015. Regulation of lipid droplet size in mammary ­epithelial cells by remodeling of membrane lipid composition-a potential mechanism. Plos one, 10 (3), e0121645. doi: 10.1371/journal.pone.0121645.
  • Deng, Y., et al., 2021. Rab18 binds PLIN2 and ACSL3 to mediate lipid droplet dynamics. Biochimica et biophysica acta. molecular and cell ­biology of lipids, 1866 (7), 158923. doi: 10.1016/j.bbalip.2021.158923.
  • Derubeis, A.R., et al., 2000. Double FYVE-containing protein 1 (DFCP1): isolation, cloning and characterization of a novel FYVE finger protein from a human bone marrow cDNA library. Gene, 255 (2), 195–203. doi: 10.1016/s0378-1119(00)00303-6.
  • Dikic, I., and Elazar, Z., 2018. Mechanism and medical implications of mammalian autophagy. Nature reviews. molecular cell biology, 19 (6), 349–364. doi: 10.1038/s41580-018-0003-4.
  • Engin, A.B., 2017. What is lipotoxicity? Advances in experimental medicine and biology, 960, 197–220. doi: 10.1007/978-3-319-48382-5_8.
  • Faylon, M.P., et al., 2014. Regulation of lipid droplet-associated proteins following growth hormone administration and feed restriction in lactating Holstein cows. Journal of dairy science, 97 (5), 2847–2855. doi: 10.3168/jds.2013-7565.
  • Feldmann, A., et al., 2017. The RAB GTPase RAB18 modulates macroautophagy and proteostasis. Biochemical and biophysical research communications, 486 (3), 738–743. doi: 10.1016/j.bbrc.2017.03.112.
  • Fujimoto, Y., et al., 2007. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. Journal of lipid research, 48 (6), 1280–1292. doi: 10.1194/jlr.M700050-JLR200.
  • Fukuda, M., 2008. Regulation of secretory vesicle traffic by Rab small GTPases. Cellular and molecular life sciences: CMLS, 65 (18), 2801–2813. doi: 10.1007/s00018-008-8351-4.
  • Gallier, S., et al., 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of ­agricultural and food chemistry, 58 (7), 4250–4257. doi: 10.1021/jf9032409.
  • Galluzzi, L., et al., 2014. Metabolic control of autophagy. Cell, 159 (6), 1263–1276. doi: 10.1016/j.cell.2014.11.006.
  • Gillingham, A.K., et al., 2014. Toward a comprehensive map of the effectors of rab GTPases. Developmental cell, 31 (3), 358–373. doi: 10.1016/j.devcel.2014.10.007.
  • Gómez-Sánchez, R., et al., 2018. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. The journal of cell biology, 217 (8), 2743–2763. doi: 10.1083/jcb.201710116.
  • Gong, J., et al., 2009. CIDE proteins and metabolic disorders. Current opinion in lipidology, 20 (2), 121–126. doi: 10.1097/MOL.0b013e328328d0bb.
  • Gong, J., et al., 2011. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. The journal of cell biology, 195 (6), 953–963. doi: 10.1083/jcb.201104142.
  • Grahn, T.H., et al., 2013. FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochemical and biophysical research communications, 432 (2), 296–301. doi: 10.1016/j.bbrc.2013.01.113.
  • Gutierrez, M.G., et al., 2004. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of cell science, 117 (Pt 13), 2687–2697. doi: 10.1242/jcs.01114.
  • Hama, Y., et al., 2022. Regulation of ER-derived membrane dynamics by the DedA domain-containing proteins VMP1 and TMEM41B. EMBO ­reports, 23 (2), e53894. doi: 10.15252/embr.202153894.
  • Hatsuzawa, K., et al., 2000. Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. The journal of biological chemistry, 275 (18), 13713–13720. doi: 10.1074/jbc.275.18.13713.
  • Henry, C., et al., 2015. Phosphoproteomics of the goat milk fat globule membrane: New insights into lipid droplet secretion from the mammary epithelial cell. Proteomics, 15 (13), 2307–2317. doi: 10.1002/pmic.201400245.
  • Hirose, H., et al., 2004. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. The EMBO journal, 23 (6), 1267–1278. doi: 10.1038/sj.emboj.7600135.
  • Homma, Y., et al., 2021. Rab family of small GTPases: an updated view on their regulation and functions. The FEBS journal, 288 (1), 36–55. doi: 10.1111/febs.15453.
  • Huang, Y., et al., 2018. Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo. Journal of inorganic biochemistry, 183, 66–76. doi: 10.1016/j.jinorgbio.2018.03.006.
  • Hutagalung, A.H., and Novick, P.J., 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiological reviews, 91 (1), 119–149. doi: 10.1152/physrev.00059.2009.
  • Ji, G., et al., 2015. Resveratrol ameliorates hepatic steatosis and inflammation in methionine/choline-deficient diet-induced steatohepatitis through regulating autophagy. Lipids in health and disease, 14 (1), 134. doi: 10.1186/s12944-015-0139-6.
  • Jia, Q., et al., 2019. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARgamma, LXRalpha and ABCA1. International journal of molecular medicine, 44 (3), 893–902. doi: 10.3892/ijmm.2019.4263.
  • Jiang, X.X., et al., 2023. VMP1 regulates hepatic lipoprotein secretion and NASH independent of autophagy. Autophagy, 19 (1), 367–369. doi: 10.1080/15548627.2022.2080958.
  • Johansen, T., and Lamark, T., 2020. Selective Autophagy: ATG8 Family Proteins, LIR Motifs and Cargo Receptors. Journal of molecular biology, 432 (1), 80–103. doi: 10.1016/j.jmb.2019.07.016.
  • Kassan, A., et al., 2013. Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains. The journal of cell biology, 203 (6), 985–1001. doi: 10.1083/jcb.201305142.
  • Keller, P., et al., 2008. Fat-specific protein 27 regulates storage of triacylglycerol. The journal of biological chemistry, 283 (21), 14355–14365. doi: 10.1074/jbc.M708323200.
  • Khaldoun, S.A., et al., 2014. Autophagosomes contribute to intracellular lipid distribution in enterocytes. Molecular biology of the cell, 25 (1), 118–132. doi: 10.1091/mbc.E13-06-0324.
  • Kimmel, A.R., et al., 2010. Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. Journal of lipid research, 51 (3), 468–471. doi: 10.1194/jlr.R000034.
  • Kumar, R., et al., 2022. Cue5 piggybacks on lipid droplets for its vacuolar degradation during stationary phase lipophagy. Cells, 11 (2), 215. doi: 10.3390/cells11020215.
  • Lamark, T., and Johansen, T., 2021. Mechanisms of selective autophagy. Annual review of cell and developmental biology, 37 (1), 143–169. doi: 10.1146/annurev-cellbio-120219-035530.
  • Lee, J.H., et al., 2017. Lipid raft-associated stomatin enhances cell fusion. FASEB journal: official publication of the federation of American societies for experimental biology, 31 (1), 47–59. doi: 10.1096/fj.201600643R.
  • Li, D., et al., 2019. The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell reports, 27 (2), 343–358.e5. e345. doi: 10.1016/j.celrep.2019.03.025.
  • Li, G., and Marlin, M.C., 2015. Rab family of GTPases. Methods in molecular biology (Clifton, N.J.), 1298, 1–15. doi: 10.1007/978-1-4939-2569-8_1.
  • Li, H., et al., 2021. Quercetin attenuates atherosclerotic inflammation by inhibiting galectin-3-NLRP3 signaling pathway. Molecular nutrition and food research, 65 (15), e2000746. doi: 10.1002/mnfr.202000746.
  • Li, J.Z., and Li, P., 2007. Cide proteins and the development of obesity. Novartis foundation symposium, 286, 155. discussion 159-163, 196-203. doi: 10.1002/9780470985571.ch13.
  • Li, J.Z., et al., 2007. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes, 56 (10), 2523–2532. doi: 10.2337/db07-0040.
  • Li, Z., et al., 2016. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Science advances, 2 (12), e1601470. doi: 10.1126/sciadv.1601470.
  • Liang, L., et al., 2003. Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. The biochemical journal, 370 (Pt 1), 195–203. doi: 10.1042/BJ20020656.
  • Liu, K., et al., 2009. Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA. American journal of physiology. endocrinology and metabolism, 297 (6), E1395–1413. doi: 10.1152/ajpendo.00188.2009.
  • Logan, A., et al., 2014. Natural variation of bovine milk fat globule size within a herd. Journal of dairy science, 97 (7), 4072–4082. doi: 10.3168/jds.2014-8010.
  • Lopez, C., et al., 2008. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of agricultural and food chemistry, 56 (13), 5226–5236. doi: 10.1021/jf7036104.
  • Lu, X., et al., 2010. Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2. Cell cycle (Georgetown, Tex.), 9 (14), 2719–2725. doi: 10.4161/cc.9.14.12181.
  • Mailler, E., et al., 2021. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nature communications, 12 (1), 6750. doi: 10.1038/s41467-021-26999-x.
  • Mairhofer, M., et al., 2002. Stomatin is a major lipid-raft component of platelet alpha granules. Blood, 100 (3), 897–904. doi: 10.1182/blood.v100.3.897.
  • Makiyama, T., et al., 2022. Sar1 Affects the Localization of Perilipin 2 to Lipid Droplets. International journal of molecular sciences, 23 (12), 6366. doi: 10.3390/ijms23126366.
  • Matoba, K., and Noda, N.N., 2021. Structural catalog of core Atg proteins opens new era of autophagy research. Journal of biochemistry, 169 (5), 517–525. doi: 10.1093/jb/mvab017.
  • McEwan, D.G., et al., 2015. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Molecular cell, 57 (1), 39–54. doi: 10.1016/j.molcel.2014.11.006.
  • Moretti, F., et al., 2018. TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO reports., 19 (9), e45889. doi: 10.15252/embr.201845889.
  • Morita, K., et al., 2018. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. The journal of cell biology, 217 (11), 3817–3828. doi: 10.1083/jcb.201804132.
  • Morrow, I.C., and Parton, R.G., 2005. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic (Copenhagen, Denmark), 6 (9), 725–740. doi: 10.1111/j.1600-0854.2005.00318.x.
  • Nagayama, M., et al., 2010. Shrinking and development of lipid droplets in adipocytes during catecholamine-induced lipolysis. FEBS letters, 584 (1), 86–92. doi: 10.1016/j.febslet.2009.10.088.
  • Nakajima, K., et al., 2004. Involvement of BNIP1 in apoptosis and endoplasmic reticulum membrane fusion. The EMBO journal, 23 (16), 3216–3226. doi: 10.1038/sj.emboj.7600333.
  • Nguyen, T.B., et al., 2017. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Developmental cell, 42 (1), 9–21 e25. doi: 10.1016/j.devcel.2017.06.003.
  • Nishimoto, Y., and Tamori, Y., 2017. CIDE family-mediated unique lipid droplet morphology in white adipose tissue and brown adipose tissue determines the adipocyte energy metabolism. Journal of atherosclerosis and thrombosis, 24 (10), 989–998. doi: 10.5551/jat.RV17011.
  • Nishino, N., et al., 2008. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. The journal of clinical investigation, 118 (8), 2808–2821. doi: 10.1172/JCI34090.
  • Olzmann, J.A., and Carvalho, P., 2019. Dynamics and functions of lipid droplets. Nature reviews. Molecular cell biology, 20 (3), 137–155. doi: 10.1038/s41580-018-0085-z.
  • Osawa, T., et al., 2019. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nature structural and molecular biology, 26 (4), 281–288. doi: 10.1038/s41594-019-0203-4.
  • Osawa, T., and Noda, N.N., 2019. Atg2: A novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein science: a publication of the protein society, 28 (6), 1005–1012. doi: 10.1002/pro.3623.
  • Ozeki, S., et al., 2005. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. Journal of cell science, 118 (Pt 12), 2601–2611. doi: 10.1242/jcs.02401.
  • Pu, M., et al., 2022. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein and cell, 14 (9), 653–667. doi: 10.1093/procel/pwac063.
  • Puri, V., et al., 2007. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. The journal of biological chemistry, 282 (47), 34213–34218. doi: 10.1074/jbc.M707404200.
  • Puri, V., et al., 2008. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proceedings of the National Academy of Sciences of the United States of America, 105 (22), 7833–7838. doi: 10.1073/pnas.0802063105.
  • Qi, J., et al., 2008. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. The EMBO journal, 27 (11), 1537–1548. doi: 10.1038/emboj.2008.92.
  • Rahman, M.A., et al., 2021. Lipid droplets and their autophagic turnover via the raft-like vacuolar microdomains. International journal of molecular sciences, 22 (15), 8144. doi: 10.3390/ijms22158144.
  • Rahman, N.I.A., et al., 2021. Stomatin-mediated inhibition of the Akt signaling axis suppresses tumor growth. Cancer research, 81 (9), 2318–2331. doi: 10.1158/0008-5472.CAN-20-2331.
  • Rambold, A.S., et al., 2015. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental cell, 32 (6), 678–692. doi: 10.1016/j.devcel.2015.01.029.
  • Reiner, D.J., and Lundquist, E.A., 2018. Small GTPases. WormBook: The online review of C. elegans biology, 2018, 1–65. doi: 10.1895/wormbook.1.67.2.
  • Renne, M.F., and Hariri, H., 2021. Lipid droplet-organelle contact sites as hubs for fatty acid metabolism, trafficking, and metabolic channeling. Frontiers in cell and developmental biology, 9, 726261. doi: 10.3389/fcell.2021.726261.
  • Saito, K., et al., 2017. Regulation of the Sar1 GTPase cycle is necessary for large cargo secretion from the endoplasmic reticulum. Frontiers in cell and developmental biology, 5, 75. doi: 10.3389/fcell.2017.00075.
  • Schroeder, B., et al., 2015. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology (Baltimore, Md.), 61 (6), 1896–1907. doi: 10.1002/hep.27667.
  • Schulze, R.J., et al., 2017. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatology communications, 1 (2), 140–152. doi: 10.1002/hep4.1021.
  • Shpilka, T., et al., 2015. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. The EMBO journal, 34 (16), 2117–2131. doi: 10.15252/embj.201490315.
  • Singh, R., et al., 2009. Autophagy regulates lipid metabolism. Nature, 458 (7242), 1131–1135. doi: 10.1038/nature07976.
  • Singh, R., et al., 2009. Autophagy regulates adipose mass and differentiation in mice. The journal of clinical investigation, 119 (11), 3329–3339. doi: 10.1172/JCI39228.
  • Stewart, G.W., 1997. Stomatin. The international journal of biochemistry and cell biology, 29 (2), 271–274. doi: 10.1016/s1357-2725(96)00072-6.
  • Sun, Z., et al., 2013. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature communications, 4 (1), 1594. doi: 10.1038/ncomms2581.
  • Sztalryd, C., and Brasaemle, D.L., 2017. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochimica et biophysica acta. Molecular and cell biology of lipids, 1862 (10 Pt B), 1221–1232. doi: 10.1016/j.bbalip.2017.07.009.
  • Takai, Y., et al., 2001. Small GTP-binding proteins. Physiological reviews, 81 (1), 153–208. doi: 10.1152/physrev.2001.81.1.153.
  • Tardelli, M., et al., 2020. The Role of Metabolic Lipases in the Pathogenesis and Management of Liver Disease. Hepatology (Baltimore, Md.), 72 (3), 1117–1126. doi: 10.1002/hep.31250.
  • Thiam, A.R., et al., 2013. The biophysics and cell biology of lipid droplets. Nature reviews. Molecular cell biology, 14 (12), 775–786. doi: 10.1038/nrm3699.
  • Thum, C., et al., 2023. Variation in milk fat globule size and composition: a source of bioactives for human health. Critical reviews in food science and nutrition, 63 (1), 87–113. doi: 10.1080/10408398.2021.1944049.
  • Toh, S.Y., et al., 2008. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. Plos one, 3 (8), e2890. doi: 10.1371/journal.pone.0002890.
  • Umlauf, E., et al., 2004. Association of stomatin with lipid bodies. The journal of biological chemistry, 279 (22), 23699–23709. doi: 10.1074/jbc.M310546200.
  • Velázquez, A.P., et al., 2016. Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. The journal of cell biology, 212 (6), 621–631. doi: 10.1083/jcb.201508102.
  • Velikkakath, A.K., et al., 2012. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Molecular biology of the cell, 23 (5), 896–909. doi: 10.1091/mbc.E11-09-0785.
  • Walther, T.C., et al., 2017. Lipid droplet biogenesis. Annual review of cell and developmental biology, 33 (1), 491–510. doi: 10.1146/annurev-cellbio-100616-060608.
  • Wang, C., et al., 2012. Rab32 is important for autophagy and lipid storage in Drosophila. Plos one, 7 (2), e32086. doi: 10.1371/journal.pone.0032086.
  • Wang, C., et al., 2012. [Effects of resveratrol on the morphology of lipid droplets and the expression of lipid droplet-associated proteins in mouse primary hepatocytes]. Xi Bao yu Fen zi Mian yi Xue za Zhi = Chinese journal of cellular and molecular immunology, 28 (9), 911–914.
  • Wang, G., et al., 2018. Role of Rab GTPases in the export trafficking of G protein-coupled receptors. Small GTPases, 9 (1-2), 130–135. doi: 10.1080/21541248.2016.1277000.
  • Wang, W., et al., 2012. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nature medicine, 18 (2), 235–243. doi: 10.1038/nm.2614.
  • Wang, Z., et al., 2016. The vici syndrome protein EPG5 Is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. Molecular cell, 63 (5), 781–795. doi: 10.1016/j.molcel.2016.08.021.
  • Wu, L., et al., 2014. Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Developmental cell, 30 (4), 378–393. doi: 10.1016/j.devcel.2014.07.005.
  • Wu, L., et al., 2014. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Science China. Life sciences, 57 (1), 107–116. doi: 10.1007/s11427-013-4585-y.
  • Wu, S.C., et al., 2022. Stomatin modulates adipogenesis through the ERK pathway and regulates fatty acid uptake and lipid droplet growth. Nature communications, 13 (1), 4174. doi: 10.1038/s41467-022-31825-z.
  • Xiang, W., et al., 2020. Effects of 1,25(OH)2 D3 on lipid droplet growth in adipocytes. BioFactors (Oxford, England), 46 (6), 943–954. doi: 10.1002/biof.1610.
  • Xu, D., et al., 2018. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. The journal of cell biology, 217 (3), 975–995. doi: 10.1083/jcb.201704184.
  • Xu, L., et al., 2024. CIDE proteins and their regulatory mechanisms in lipid droplet fusion and growth. FEBS letters, 598 (10), 1154–1169. doi: 10.1002/1873-3468.14823.
  • Xu, L., et al., 2012. CIDE proteins and lipid metabolism. Arteriosclerosis, thrombosis, and vascular biology, 32 (5), 1094–1098. doi: 10.1161/ATVBAHA.111.241489.
  • Xu, W., et al., 2016. Differential roles of cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. The journal of biological chemistry, 291 (9), 4282–4293. doi: 10.1074/jbc.M115.701094.
  • Ye, J., et al., 2009. Cideb, an ER- and lipid droplet-associated protein, ­mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell metabolism, 9 (2), 177–190. doi: 10.1016/j.cmet.2008.12.013.
  • Yousefi, M., et al., 2022. TMEM41B and VMP1 modulate cellular lipid and energy metabolism for facilitating dengue virus infection. Plos pathogens, 18 (8), e1010763. doi: 10.1371/journal.ppat.1010763.
  • Yu, J., and Li, P., 2017. The size matters: regulation of lipid storage by lipid droplet dynamics. Science China. Life sciences, 60 (1), 46–56. doi: 10.1007/s11427-016-0322-x.
  • Zechner, R., et al., 2012. FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell metabolism, 15 (3), 279–291. doi: 10.1016/j.cmet.2011.12.018.
  • Zhang, L.J., et al., 2014. Cideb facilitates the lipidation of chylomicrons in the small intestine. Journal of lipid research, 55 (7), 1279–1287. doi: 10.1194/jlr.M046482.
  • Zhang, Y., et al., 2009. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 106 (47), 19860–19865. doi: 10.1073/pnas.0906048106.
  • Zhou, R., et al., 2018. Resveratrol ameliorates lipid droplet accumulation in liver through a SIRT1/ATF6-dependent mechanism. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 51 (5), 2397–2420. doi: 10.1159/000495898.
  • Zhou, Z., et al., 2003. Cidea-deficient mice have lean phenotype and are ­resistant to obesity. Nature genetics, 35 (1), 49–56. doi: 10.1038/ng1225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.