388
Views
20
CrossRef citations to date
0
Altmetric
Festschrift: Reviews

Leber congenital amaurosis, from darkness to light: An ode to Irene Maumenee

, &
Pages 7-15 | Received 18 Oct 2016, Accepted 05 Dec 2016, Published online: 17 Jan 2017

References

  • Weleber RG, Francis PJ, Trzupek KM, Beattie C. Leber Congenital Amaurosis. 2004 July 7 [Updated 2013 May 2]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1298/.
  • Oliveira L, Miniou P, Viegas-Pequignot E, et al. Human retinal guanylate cyclase (GUC2D) maps to chromosome 17p13.1. Genomics 1994;22:478–481.
  • Duda T, Venkataraman V, Goraczniak R, et al. Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 1999;38:509–515.
  • Cooper DN, Ball EV, Stenson PD, et al. The Human Gene Mutation Database (HGMD) [Internet]. Cardiff, UK: The Institute of Medical Genetics. Available from: http://www.hgmd.cf.ac.uk.
  • Rozet JM, Perrault I, Gerber S, et al. Complete abolition of the retinal-specific guanylyl cyclase (retGC-1) catalytic ability consistently leads to leber congenital amaurosis (LCA). Invest Ophthalmol Vis Sci 2001;42:1190–1192.
  • Galvin JA, Fishman GA, Stone EM, et al. Evaluation of genotype-phenotype associations in leber congenital amaurosis. Retina 2005;25:919–929.
  • Morimura H, Fishman GA, Grover SA, et al. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. Proc Nat Acad Sci 1998;95:3088–3093.
  • Moiseyev G, Chen Y, Takahashi Y, et al. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Nat Acad Sci 2005;102:12413–12418.
  • Marlhens F, Bareil C, Griffoin JM. et al. Mutations in RPE65 cause Leber’s congenital amaurosis. (Letter) Nature Genet 1997;17:139–141.
  • Retinal pigment epithelium-specific 65 (RPE65). 1994 April 18 [Updated 2016 Dec 5]. In: Online Mendelian Inheritance in Man (OMIM) database [Internet]. Available from: http://www.omim.org/entry/180069.
  • Eblimit A, Nguyen TM, Chen Y, et al. Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina. Hum Mol Genet 2015 15;24:1584–1601.
  • Mackay DS, Ocaka LA, Borman AD, et al. Screening of SPATA7 in patients with Leber congenital amaurosis and severe childhood-onset retinal dystrophy reveals disease-causing mutations. Invest Ophthal Vis Sci 2011;52:3032–3038.
  • Jacobson SG, Cideciyan AV, Huang WC, et al. Leber congenital amaurosis: Genotypes and retinal structure phenotypes. Adv Exp Med Biol 2016;854:169–175.
  • Sohocki MM, Perrault I, Leroy BP, et al. Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Molec Genet Metab 2000;70:142–150.
  • van der Spuy J, Chapple JP, Clark BJ, et al. The Leber congenital amaurosis gene product AIPL1 is localized exclusively in rod photoreceptors of the adult human retina. Hum Molec Genet 2002;11:823–831.
  • Ramamurthy V, Roberts M, van den Akker F, et al. AIPL1, a protein implicated in Leber’s congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Proc Nat Acad Sci 2003;100:12630–12635.
  • Dharmaraj S, Li Y, Robitaille JM, et al. A novel locus for Leber congenital amaurosis maps to chromosome 6q. (Letter) Am J Hum Genet 2000;66:319–326.
  • Boldt K, Mans DA, Won J, et al. Disruption of intraflagellar protein transport in photoreceptor cilia causes Leber congenital amaurosis in humans and mice. J Clin Invest 2011;121:2169–2180.
  • Mohamed MD, Topping NC, Jafri H, et al. Progression of phenotype in Leber’s congenital amaurosis with a mutation at the LCA5 locus. Br J Ophthalmol 2003;87:473–475.
  • Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 2001;68:1295–1298.
  • Mavlyutov, TA, Zhao, H, Ferreira, PA. Species-specific subcellular localization of RPGR and RPGRIP isoforms: implications for the phenotypic variability of congenital retinopathies among species. Hum Molec Genet 2002;11:1899–1907.
  • Roepman R, Bernoud-Hubac N, Schick DE, et al. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum Mol Genet 2000;9:2095–2105.
  • Kimura A, Singh D, Wawrousek EF, et al. Both PCE-1/RX and OTX/CRX interactions are necessary for photoreceptor-specific gene expression. J Biol Chem 2000 14;275:1152–1160.
  • Akagi T, Mandai M, Ooto S, et al. Otx2 homeobox gene induces photoreceptor-specific phenotypes in cells derived from adult iris and ciliary tissue. Invest Ophthal Vis Sci 2004;45:4570–4575.
  • Swaroop A, Wang Q, Wu W, et al. Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum Mol Genet 1999;8:299–305.
  • Nichols LL 2nd, Alur RP, Boobalan E, et al. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum Mutat 2010;31(6):E1472–E1483.
  • Pellikka M, Tanentzapf G, Pinto M, et al. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002;416:143–149.
  • Lotery AJ, Malik A, Shami SA, et al. CRB1 mutations may result in retinitis pigmentosa without para-arteriolar RPE preservation. Ophthalmic Genet 2001;22:163–169.
  • Jacobson SG, Cideciyan AV, Aleman TS, et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet 2003;12:1073–1078.
  • Keen TJ, Mohamed MD, McKibbin M, et al. Identification of a locus (LCA9) for Leber’s congenital amaurosis on chromosome 1p36. Eur J Hum Genet 2003;11:420–423.
  • Emanuelli M, Carnevali F, Saccucci F, et al. Molecular cloning, chromosomal localization, tissue mRNA levels, bacterial expression, and enzymatic properties of human NMN adenylyltransferase. J Biol Chem 2001;276:406–412.
  • Koenekoop RK, Wang H, Majewski J, et al. Mutations in NMNAT1 cause Leber congenital amaurosis and identify a new disease pathway for retinal degeneration. Nat Genet 2012;44:1035–1039.
  • Valente EM, Silhav JL, Brancati F, et al. Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat Genet 2006;38:623–625.
  • Stowe TR, Wilkinson CJ, Iqbal A, et al. The centriolar satellite proteins Cep72 and Cep290 interact and are required for recruitment of BBS proteins to the cilium. Molec Biol Cell 2012;23:3322–3335.
  • den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006;79(3):556–561.
  • Perrault I, Delphin N, Hanein S, et al. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat 2007;28:416.
  • Collart FR, Huberman E. Cloning and sequence analysis of the human and Chinese hamster inosine-5-prime-monophosphate dehydrogenase cDNAs. J Biol Chem 1988;263:15769–15772.
  • Molday LL, Djajadi H, Yan P, et al. RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of Leber congenital amaurosis 12. Hum Mol Genet 2013;22:3894–3905.
  • Preising MN, Hausotter-Will N, Solbach MC, et al. Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy. Invest Ophthal Vis Sci 2012;53:3463–3472.
  • Haeseleer F, Jang GF, Imanishi Y, et al. Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. J Biol Chem 2002;277:45537–45546.
  • McBee JK, Palczewski K, Baehr W, et al. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001;20:469–529.
  • Jacobson SG, Cideciyan AV, Aleman TS, et al. RDH12 and RPE65, visual cycle genes causing Leber congenital amaurosis, differ in disease expression. Invest Ophthal Vis Sci 2007;48:332–338.
  • Xue L, Gollapalli DR, Maiti P, et al. A palmitoylation switch mechanism in the regulation of the visual cycle. Cell 2004;117:761–771.
  • den Hollander AI, Lopez I, Yzer S, et al. Identification of novel mutations in patients with Leber congenital amaurosis and juvenile RP by genome-wide homozygosity mapping with SNP microarrays. Invest Ophthal Vis Sci 2007;48:5690–5698.
  • Xi Q, Pauer GJ, Marmorstein AD, et al. Tubby-like protein 1 (TULP1) interacts with F-actin in photoreceptor cells. Invest Ophthalmol Vis Sci 2005;46:4754–4761.
  • Mataftsi A, Schorderet DF, Chachoua L, et al. Novel TULP1 mutation causing Leber congenital amaurosis or early onset retinal degeneration. Invest Ophthal Vis Sci 2007; 48:5160–5167.
  • Otto EA, Loeys B, Khanna H, et al. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 2005;37:282–288.
  • Estrada-Cuzcano A, Koenekoop RK, Coppieters F, et al. IQCB1 mutations in patients with Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2011;52:834–839.
  • Lee C, Wallingford JB, Gross JM. Cluap1 is essential for ciliogenesis and photoreceptor maintenance in the vertebrate eye. Invest Ophthalmol 2014;55:4585–4592.
  • Botilde Y, Yoshiba S, Shinohara K, et al. Cluap1 localizes preferentially to the base and tip of cilia and is required for ciliogenesis in the mouse embryo. Dev Biol 2013;381:203–212.
  • Xu M, Yang L, Wang F, Li H, et al. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet 2015;134:1069–1078.
  • Perrault I, Saunier S, Hanein S, et al. Mainzer–Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet 2012;90:864–870.
  • Travis GH, Christerson L, Danielson PE, et al. The human retinal degeneration slow (RDS) gene: chromosome assignment and structure of the mRNA. Genomics 1991;10:733–739.
  • Peripherin 2 (PRPH2). 1989 Nov 30 [Updated 2015 May 20]. In: Online Mendelian Inheritance in Man (OMIM) database [Internet]. Available from: http://www.omim.org/entry/179605.
  • Sergouniotis PI, Davidson AE, Mackay DS, et al. Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause Leber congenital amaurosis. Am J Hum Genet 2011;89:183–190.
  • Pattnaik BR, Shahi PK, Marino MJ, et al. A novel KCNJ13 nonsense mutation and loss of Kir7.1 channel function causes Leber congenital amaurosis (LCA16). Hum Mutat 2015;36:720–727.
  • Haeseleer F, Imanishi Y, Maeda T, et al. Essential role of Ca(2+)-binding protein 4, a Ca(V)1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 2004;7:1079–1087.
  • Littink KW, van Genderen MM, Collin RWJ, et al. A novel homozygous nonsense mutation in CABP4 causes congenital cone-rod synaptic disorder. Invest Ophthal Vis Sci 2009;50:2344–2350.
  • Aldahmesh MA, Al-Owain M, Alqahtani F, et al. A null mutation in CABP4 causes Leber’s congenital amaurosis-like phenotype. Mol Vision 2010;16:207–212.
  • Zhang L, Lim SLDu H, et al. High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-beta family member growth differentiation factor 6. J Biol Chem 2012;287:1520–1526.
  • Asai-Coakwell M, French CR, Berry KM. GDF6, a novel locus for a spectrum of ocular developmental anomalies. Am J Hum Genet 2007;80:306–315.
  • Leber T. Über Retinitis pigmentosa und angeborene Amaurose. Archiv für Ophthalmologie (in German) 1869;15:1–25.
  • Koenekoop RK, Fishman GA, Iannaccone A, et al. Electroretinographic abnormalities in parents of patients with Leber congenital amaurosis who have heterozygous GUCY2D mutations. Arch Ophthalmol 2002;120:1325–1330.
  • Jacobson SG, Cideciyan AV, Aleman TS, et al. Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. Hum Mol Genet 2003;12:1073–1078.
  • Jacobson SG, Cideciyan AV, Huang WC, et al. TULP1 mutations causing early-onset retinal degeneration: preserved but insensitive macular cones. Invest Ophthalmol Vis Sci 2014 29;55:5354–5364.
  • Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 2004;49:379–398.
  • Koenekoop RK. Retinal degenerations: Biology, diagnostics, and therapeutics. In: Tombran-Tink J, Barnstable CJ, editors. Leber congenital amaurosis. 1st ed. New York: Humana; 2007:61–90.
  • Koenekoop RK. Successful RPE65 gene replacement and improved visual function in humans. Ophthalmic Genet 2008;29:89–91.
  • den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008;27:391–419.
  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008 22;358(21):2231–2239.
  • Bainbridge JW, Mehat MS, Sundaram V, et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 2015 14;372(20):1887–1897.
  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008 22;358(21):2240–2248.
  • Testa F, Maguire AM, Rossi S., et al. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 2013;120(6):1283–1291.
  • Burnight ER, Wiley LA, Drack AV, et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther 2014;21(7):662–672.
  • Pawlyk BS, Bulgakov OV, Liu X, et al. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. Hum Gene Ther 2010;21(8):993–1004.
  • U.S. National Institutes of Health. ClinicalTrials.gov database [Internet]. Washington, DC: Author. Available from: https://clinicaltrials.gov/.
  • Duncan, Jacque Lynne. Phase 2 Study of CNTF on Photoreceptor Structure in Retinitis Pigmentosa. National Institute of Health (NIH) Project #: 5R01FD004100-2. Project start: 2012-09-15. Project end: 2017-05-31.
  • Birch DG, Bennett LD, Duncan JL, et al. Long-term follow-up of patients with retinitis pigmentosa (RP) receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol 2016 Jul 22. doi:10.1016/j.ajo.2016.07.013.
  • Koenekoop RK, Sui R, Sallum J, et al. Oral 9-cis retinoid for childhood blindness due to Leber congenital amaurosis caused by RPE65 or LRAT mutations: an open-label phase 1b trial. Lancet 2014 25;384(9953):1513–1520.
  • Scholl HP, Moore AT, Koenekoop RK, et al. Safety and proof-of-concept study of oral QLT091001 in retinitis pigmentosa due to inherited deficiencies of Retinal Pigment Epithelial 65 protein (RPE65) or Lecithin: Retinol Acyltransferase (LRAT). PLoS One 2015 10;10:e0143846.
  • Collin RW, den Hollander AI, van der Velde-Visser SD. Antisense Oligonucleotide (AON)-based therapy for Leber congenital amaurosis caused by a frequent mutation in CEP290. Mol Ther Nucleic Acids 2012 27;1:e14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.