314
Views
2
CrossRef citations to date
0
Altmetric
Research Reports

Genome-wide linkage and haplotype sharing analysis implicates the MCDR3 locus as a candidate region for a developmental macular disorder in association with digit abnormalities

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 511-519 | Received 08 Nov 2016, Accepted 20 Jan 2017, Published online: 02 Mar 2017

References

  • Frank HR, I MBL, Williams RJ, Sidbury JB. A new dominant progressive foveal dystrophy. Am J Ophthalmol. 1974;78(6):903–916.
  • Lefler WH, Wadsworth JAC, Sidbury JB. Hereditary macular degeneration and amino-aciduria. Am J Ophthalmol. 1971;71(1):224–230.
  • Small KW. North Carolina macular dystrophy, revisited. Ophthalmology. 1989;96(12):1747–1754.
  • Michaelides M, Jeffery G, Moore A. Developmental macular disorders: phenotypes and underlying molecular genetic basis. Br J Ophthalmol. 2012;96:917–924.
  • Sorsby A. Congenital coloboma of the macula. Br J Ophthalmol. 1935;19:65–90.
  • Thompson EM, Baraitser M. Sorsby syndrome: a report on further generations of the original family. J Med Genet. 1988;25(5):313–321.
  • Puech B. Colobomes maculaires héréditaires. In: Société d’ophtalmologie de Paris, editor. Les Dystrophies Héréditaires de La Macula. Bulletin d’ophtalmologie des Sociétés de France. Rapport annuel. Paris, France: editor; 1991:237–244.
  • Small KW, Weber JL, Roses A, et al. North Carolina macular dystrophy is assigned to chromosome 6. Genomics. 1992;13(3):681–685.
  • Pauleikhoff D, Sauer CG, Müller CR, et al. Clinical and genetic evidence for autosomal dominant North Carolina macular dystrophy in a German family. Am J Ophthalmol. 1997;124(3):412–415.
  • Rabb MF, Mullen L, Yelchits S, et al. A North Carolina macular dystrophy phenotype in a Belizean family maps to the MCDR1 locus. Am J Ophthalmol. 1998;125(4):502–508.
  • Reichel MB, Kelsell RE, Fan J, et al. Phenotype of a British North Carolina macular dystrophy family linked to chromosome 6q. Br J Ophthalmol. 1998;82(10):1162–1168.
  • Rohrschneider K, Blankenagel A, Kruse FE, et al. Macular function testing in a German pedigree with North Carolina macular dystrophy. Retina. 1998;18(5):453–459.
  • Small KW, Puech B, Mullen L, Yelchits S. North Carolina macular dystrophy phenotype in France maps to the MCDR1 locus. Mol Vis. 1997;3(310):1.
  • Small K, Garcia C, Gallardo G, et al. North Carolina macular dystrophy (MCDR1) in Texas. Retina. 1998;18(5):448–452.
  • Small KW, Udar N, Yelchits S, et al. North Carolina macular dystrophy (MCDR1) locus: a fine resolution genetic map and haplotype analysis. Mol Vis. 1999;5:38.
  • Yang Z, Tong Z, Chorich LJ, et al. Clinical characterization and genetic mapping of North Carolina macular dystrophy. Vision Res. 2008;48(3):470–477.
  • Bowne SJ, Sullivan LS, Wheaton DK, et al. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene. Mol Vis. 2016;22:1239–1247.
  • Small KW, DeLuca AP, Whitmore SS, et al. North Carolina macular dystrophy is caused by dysregulation of the retinal transcription factor PRDM13. Ophthalmology. 2016;123:9–18.
  • Rosenberg T, Roos B, Johnsen T, et al. Clinical and genetic characterization of a Danish family with North Carolina macular dystrophy. Mol Vis. 2010;16:2659–2668.
  • Michaelides M, Johnson S, Tekriwal AK, et al. An early-onset autosomal dominant macular dystrophy (MCDR3) resembling North Carolina macular dystrophy maps to chromosome 5. Investig Ophthalmol Vis Sci. 2003;44(5):2178–2183.
  • Bahlo M, Bromhead CJ. Generating linkage mapping files from Affymetrix SNP chip data. Bioinformatics. 2009;25(15):1961–1962.
  • Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30:97–101.
  • Thiele H, Nürnberg P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics. 2005;21(8):1730–1732.
  • Miyazawa H, Kato M, Awata T, et al. Homozygosity haplotype allows a genomewide search for the autosomal segments shared among patients. Am J Hum Genet. 2007;80(6):1090–1102.
  • Jiang H, Orr A, Guernsey DL, et al. Application of homozygosity haplotype analysis to genetic mapping with high-density SNP genotype data. PLoS One. 2009;4(4): e5280.
  • McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303.
  • Robinson PN, Köhler S, Oellrich A, et al. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res. 2014;24(2):340–348.
  • Robinson PN, Köhler S, Bauer S, et al. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet. 2008;83(5):610–615.
  • Jäger M, Wang K, Bauer S, et al. Jannovar: a java library for exome annotation. Hum Mutat. 2014;35(5):548–555.
  • Liu X, Jian X, Boerwinkle E. dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32(8):894–899.
  • Amberger J, Bocchini C, Hamosh A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat. 2011;32(5):564–567.
  • Maiella S, Rath A, Angin C, et al. Orphanet et son réseau : où trouver une information validée sur les maladies rares. Rev Neurol (Paris). 2013;169:S3–S8.
  • Bult CJ, Eppig JT, Blake JA, et al. The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res. 2013;41(Database issue):D885–91.
  • Smith CL, Goldsmith C-AW, Eppig JT. The Mammalian Phenotype Ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 2005;6(1):R7.
  • Van Slyke CE, Bradford YM, Westerfield M, Haendel MA. The zebrafish anatomy and stage ontologies: representing the anatomy and development of Danio rerio. J Biomed Semantics. 2014;5(1):12.
  • Smedley D, Oellrich A, Köhler S, et al. PhenoDigm: analyzing curated annotations to associate animal models with human diseases. Database. 2013;2013:bat025.
  • Samocha KE, Robinson EB, Sanders SJ, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–950.
  • Bakkar N, Wang J, Ladner KJ, et al. IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol. 2008;180(4):787–802.
  • Swarnkar G, Zhang K, Mbalaviele G, et al. Constitutive activation of IKK2/NF-κB impairs osteogenesis and skeletal development. Awad HA, ed. PLoS One. 2014;9(3):e91421.
  • Lu H, Lu Q, Gaddipati S, et al. IKK2 Inhibition attenuates laser-induced choroidal neovascularization. Chen J, ed. PLoS One. 2014;9(1):e87530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.