3,842
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Atypical and ultra-rare Usher syndrome: a review

, , ORCID Icon, , , , , , , ORCID Icon & ORCID Icon show all
Pages 401-412 | Received 27 Dec 2019, Accepted 15 Mar 2020, Published online: 06 May 2020

References

  • Friedman TB, Schultz JM, Ahmed ZM, Tsilou ET, Brewer CC. Usher syndrome: hearing loss with vision loss. In: Alford RL, Sutton V, editors. Medical genetics in the clinical practice of ORL. Advances in oto-rhino-laryngology. Vol. 70. Basel (Switzerland): Karger Publishers; 2011. p. 56–65. doi:10.1159/000322473.
  • Hope C, Bundey S, Proops D, Fielder A. 1997. Usher syndrome in the city of Birmingham—prevalence and clinical classification. Br J of Ophthalmol. 81(1):46–53. doi:10.1136/bjo.81.1.46.
  • Grøndahl J. 1987. Estimation of prognosis and prevalence of retinitis pigmentosa and Usher syndrome in Norway. Clin Genet. 31(4):255–64. doi:10.1111/j.1399-0004.1987.tb02804.x.
  • Rosenberg T, Haim M, Hauch AM, Parving A. 1997. The prevalence of Usher syndrome and other retinal dystrophy-hearing impairment associations. Clin Genet. 51(5):314–21. doi:10.1111/j.1399-0004.1997.tb02480.x.
  • Spandau UH, Rohrschneider K. 2002. Prevalence and geographical distribution of Usher syndrome in Germany. Graefes Arch Clin Exp Ophthalmol. 240(6):495–98. doi:10.1007/s00417-002-0485-8.
  • Boughman JA, Vernon M, Shaver KA. 1983. Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis. 36(8):595–603. doi:10.1016/0021-9681(83)90147-9.
  • Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K. Frequency of Usher syndrome in two pediatric populations: implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12(8):512–16. doi:10.1097/GIM.0b013e3181e5afb8.
  • Davenport S, Omenn G The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal. 1977.
  • Smith RJ, Berlin CI, Hejtmancik JF, Keats BJ, Kimberling WJ, Lewis RA. Clinical diagnosis of the Usher syndromes. Usher Syndrome Consortium. Am J Med Genet. 1994;50(1):32–38. doi:10.1002/ajmg.1320500107.
  • Gorlin RJ, Tilsner TJ, Feinstein S, Duvall AJ 3rd. 1979. Usher’s syndrome type III. Arch Otolaryngol. 105(6):353–54. doi:10.1001/archotol.1979.00790180051011.
  • Karjalainen S, Terasvirta M, Karja J, Kaariainen H. 1983. An unusual otological manifestation of Usher’s syndrome in four siblings. Clin Genet. 24(4):273–79. doi:10.1111/j.1399-0004.1983.tb00082.x.
  • Smith RJH, Pelias MZ, Daiger SP, Keats B, Kimberling W, Hejtmancik JF. 1992. Clinical variability and genetic-heterogeneity within the Acadian Usher population. Am J Med Genet. 43(6):964–69. doi:10.1002/ajmg.1320430612.
  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995;374(6517):60–61. doi:10.1038/374060a0.
  • Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet. 2000;26(1):51–55. doi:10.1038/79171.
  • Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet. 2000;26(1):56–60. doi:10.1038/79178.
  • Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet. 2001;68(1):26–37. doi:10.1086/316954.
  • Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG. Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet. 2001;27(1):108–12. doi:10.1038/83667.
  • Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF. PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet. 2003;12(24):3215–23. doi:10.1093/hmg/ddg358.
  • Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet. 2001;10(16):1709–18. doi:10.1093/hmg/10.16.1709.
  • Weil D, El-Amraoui A, Masmoudi S, Mustapha M, Kikkawa Y, Lainé S. Usher syndrome type IG (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum Mol Genet. 2003;12(5):463–71. doi:10.1093/hmg/ddg051.
  • Eudy JD, Weston MD, Yao S, Hoover DM, Rehm HL, Ma-Edmonds M. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science. 1998;280(5370):1753–57. doi:10.1126/science.280.5370.1753.
  • Weston MD, Luijendijk MW, Humphrey KD, Moller C, Kimberling WJ. 2004. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet. 74(2):357–66. doi:10.1086/381685.
  • Ebermann I, Scholl HP, Charbel Issa P, Becirovic E, Lamprecht J, Jurklies B. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet. 2007;121(2):203–11. doi:10.1007/s00439-006-0304-0.
  • Joensuu T, Hamalainen R, Yuan B, Johnson C, Tegelberg S, Gasparini P. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. Am J Hum Genet. 2001;69(4):673–84. doi:10.1086/323610.
  • Adato A, Vreugde S, Joensuu T, Avidan N, Hamalainen R, Belenkiy O. USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur J Hum Genet. 2002;10(6):339–50. doi:10.1038/sj.ejhg.5200831.
  • Cosgrove D, Zallocchi M. Usher protein functions in hair cells and photoreceptors. Int J Biochem Cell Biol. 2014;46:80–89. doi:10.1016/j.biocel.2013.11.001.
  • Kremer H, van Wijk E, Marker T, Wolfrum U, Roepman R. 2006. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet. 15(Issue suppl_2):R262–70. doi:10.1093/hmg/ddl205.
  • Bharadwaj AK, Kasztejna JP, Huq S, Berson EL, Dryja TP. 2000. Evaluation of the myosin VIIA gene and visual function in patients with Usher syndrome type I. Exp Eye Res. 71(2):173–81. doi:10.1006/exer.2000.0863.
  • Ouyang XM, Yan D, Du LL, Hejtmancik JF, Jacobson SG, Nance WE. Characterization of Usher syndrome type I gene mutations in an Usher syndrome patient population. Hum Genet. 2005;116(4):292–99. doi:10.1007/s00439-004-1227-2.
  • Jaijo T, Aller E, Oltra S, Beneyto M, Najera C, Ayuso C. Mutation profile of the MYO7A gene in Spanish patients with Usher syndrome type I. Hum Mutat. 2006;27(3):290–91. doi:10.1002/humu.9404.
  • Roux AF, Faugere V, Le Guedard S, Pallares-Ruiz N, Vielle A, Chambert S. Survey of the frequency of USH1 gene mutations in a cohort of Usher patients shows the importance of cadherin 23 and protocadherin 15 genes and establishes a detection rate of above 90%. J Med Genet. 2006;43(9):763–68. doi:10.1136/jmg.2006.041954.
  • Pennings RJ, Te Brinke H, Weston MD, Claassen A, Orten DJ, Weekamp H. USH2A mutation analysis in 70 Dutch families with Usher syndrome type II. Hum Mutat. 2004;24(2):185. doi:10.1002/humu.9259.
  • Baux D, Larrieu L, Blanchet C, Hamel C, Ben Salah S, Vielle A. Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients. Hum Mutat. 2007;28(8):781–89. doi:10.1002/humu.20513.
  • Stabej PL, Saihan Z, Rangesh N, Steele-Stallard HB, Ambrose J, Coffey A. Comprehensive sequence analysis of nine Usher syndrome genes in the UK national collaborative Usher study. J Med Genet. 2012;49(1):27–36. doi:10.1136/jmedgenet-2011-100468.
  • Garcia-Garcia G, Besnard T, Baux D, Vache C, Aller E, Malcolm S. The contribution of GPR98 and DFNB31 genes to a Spanish Usher syndrome type 2 cohort. Mol Vis. 2013;19:367–73.
  • Oshima A, Jaijo T, Aller E, Millan JM, Carney C, Usami S. Mutation profile of the CDH23 gene in 56 probands with Usher syndrome type I. Hum Mutat. 2008;29(6):E37–46. doi:10.1002/humu.20761.
  • Ness SL, Ben-Yosef T, Bar-Lev A, Madeo AC, Brewer CC, Avraham KB. Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J Med Genet. 2003;40(10):767–72. doi:10.1136/jmg.40.10.767.
  • Pakarinen L, Karjalainen S, Simola KO, Laippala P, Kaitalo H. 1995. Usher’s syndrome type 3 in Finland. Laryngoscope. 105(6):613–17. doi:10.1288/00005537-199506000-00010.
  • Bonnet C, Grati M, Marlin S, Levilliers J, Hardelin JP, Parodi M. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Orphanet J Rare Dis. 2011;6(1):21. doi:10.1186/1750-1172-6-21.
  • Aparisi MJ, Aller E, Fuster-Garcia C, Garcia-Garcia G, Rodrigo R, Vazquez-Manrique RP. Targeted next generation sequencing for molecular diagnosis of Usher syndrome. Orphanet J Rare Dis. 2014;9(1):168. doi:10.1186/s13023-014-0168-7.
  • Besnard T, Garcia-Garcia G, Baux D, Vache C, Faugere V, Larrieu L. Experience of targeted Usher exome sequencing as a clinical test. Mol Genet Genomic Med. 2014;2(1):30–43. doi:10.1002/mgg3.25.
  • Sun T, Xu K, Ren Y, Xie Y, Zhang X, Tian L. Comprehensive molecular screening in Chinese Usher syndrome patients. Invest Ophthalmol Vis Sci. 2018;59(3):1229–37. doi:10.1167/iovs.17-23312.
  • Khalaileh A, Abu-Diab A, Ben-Yosef T, Raas-Rothschild A, Lerer I, Alswaiti Y. The genetics of Usher syndrome in the Israeli and Palestinian populations. Invest Ophthalmol Vis Sci. 2018;59(2):1095–104. doi:10.1167/iovs.17-22817.
  • Bonnet C, Riahi Z, Chantot-Bastaraud S, Smagghe L, Letexier M, Marcaillou C. An innovative strategy for the molecular diagnosis of Usher syndrome identifies causal biallelic mutations in 93% of European patients. Eur J Hum Genet. 2016;24(12):1730–38. doi:10.1038/ejhg.2016.99.
  • Neuhaus C, Eisenberger T, Decker C, Nagl S, Blank C, Pfister M. Next‐generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read‐through, and PEX 26 mutated in Heimler syndrome. Mol Genet Genomic Med. 2017;5(5):531–52. doi:10.1002/mgg3.312.
  • Fuster-García C, García-García G, Jaijo T, Blanco-Kelly F, Tian L, Hakonarson H. Expanding the genetic landscape of Usher-like phenotypes. Invest Ophthalmol Vis Sci. 2019;60(14):4701–10. doi:10.1167/iovs.19-27470.
  • Ebermann I, Phillips JB, Liebau MC, Koenekoop RK, Schermer B, Lopez I. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest. 2010;120(6):1812–23. doi:10.1172/Jci39715.
  • Puffenberger EG, Jinks RN, Sougnez C, Cibulskis K, Willert RA, Achilly NP. Genetic mapping and exome sequencing identify variants associated with five novel diseases. PLoS One. 2012;7(1):e28936. doi:10.1371/journal.pone.0028936.
  • Eisenberger T, Slim R, Mansour A, Nauck M, Nurnberg G, Nurnberg P. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. Orphanet J Rare Dis. 2012;7(1):59. doi:10.1186/1750-1172-7-59.
  • Riazuddin S, Belyantseva IA, Giese AP, Lee K, Indzhykulian AA, Nandamuri SP. Alterations of the CIB2 calcium- and integrin-binding protein cause Usher syndrome type 1J and nonsyndromic deafness DFNB48. Nat Genet. 2012;44(11):1265–71. doi:10.1038/ng.2426.
  • Khateb S, Zelinger L, Mizrahi-Meissonnier L, Ayuso C, Koenekoop RK, Laxer U. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet. 2014;51(7):460–69. doi:10.1136/jmedgenet-2014-102287.
  • Namburi P, Ratnapriya R, Khateb S, Lazar CH, Kinarty Y, Obolensky A. Bi-allelic truncating mutations in CEP78, encoding centrosomal protein 78, cause cone-rod degeneration with sensorineural hearing loss. Am J Hum Genet. 2016;99(3):777–84. doi:10.1016/j.ajhg.2016.07.010.
  • Khateb S, Kowalewski B, Bedoni N, Damme M, Pollack N, Saada A. A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med. 2018;20(9):1004–12. doi:10.1038/gim.2017.227.
  • Ahmed ZM, Jaworek TJ, Sarangdhar GN, Zheng LL, Gul K, Khan SN. Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment. J Med Genet. 2018;55(7):479–88. doi:10.1136/jmedgenet-2017-105221.
  • Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.
  • Tiwari A, Bahr A, Bähr L, Fleischhauer J, Zinkernagel MS, Winkler N. Next generation sequencing based identification of disease-associated mutations in Swiss patients with retinal dystrophies. Sci Rep. 2016;6:1–11.
  • Yoshimura H, Hashimoto T, Murata T, Fukushima K, Sugaya A, Nishio SY. Novel ABHD12 mutations in PHARC patients: the differential diagnosis of deaf-blindness. Ann Otol Rhinol Laryngol. 2015;(124 Suppl 1(1_suppl)):77S–83S. doi:10.1177/0003489415574513.
  • Kubota D, Gocho K, Kikuchi S, Akeo K, Miura M, Yamaki K. CEP250 mutations associated with mild cone-rod dystrophy and sensorineural hearing loss in a Japanese family. Ophthalmic Genet. 2018;39(4):500–07. doi:10.1080/13816810.2018.1466338.
  • Fuster-Garcia C, Garcia-Garcia G, Jaijo T, Fornes N, Ayuso C, Fernandez-Burriel M. High-throughput sequencing for the molecular diagnosis of Usher syndrome reveals 42 novel mutations and consolidates CEP250 as Usher-like disease causative. Sci Rep. 2018;8(1):17113. doi:10.1038/s41598-018-35085-0.
  • Nikopoulos K, Farinelli P, Giangreco B, Tsika C, Royer-Bertrand B, Mbefo MK. Mutations in CEP78 cause cone-rod dystrophy and hearing loss associated with primary-cilia defects. Am J Hum Genet. 2016;99(3):770–76. doi:10.1016/j.ajhg.2016.07.009.
  • Fu Q, Xu MC, Chen X, Sheng XL, Yuan ZS, Liu YN. CEP78 is mutated in a distinct type of Usher syndrome. J Med Genet. 2017;54(3):190–95. doi:10.1136/jmedgenet-2016-104166.
  • Schneider E, Marker T, Daser A, Frey-Mahn G, Beyer V, Farcas R. Homozygous disruption of PDZD7 by reciprocal translocation in a consanguineous family: a new member of the Usher syndrome protein interactome causing congenital hearing impairment. Hum Mol Genet. 2009;18(4):655–66. doi:10.1093/hmg/ddn395.
  • Booth KT, Azaiez H, Kahrizi K, Simpson AC, Tollefson WTA, Sloan CM, Meyer NC, Babanejad M, Ardalani F, Arzhangi S, et al. PDZD7 and hearing loss: more than just a modifier. Am J Med Genet Part A. 2015;167(12):2957–65. doi:10.1002/ajmg.a.37274.
  • Vona B, Lechno S, Hofrichter MAH, Hopf S, Lassig AK, Haaf T. Confirmation of PDZD7 as a nonsyndromic hearing loss gene. Ear Hear. 2016;37(4):E238–E46. doi:10.1097/Aud.0000000000000278.
  • Stabej PL, James C, Ocaka L, Tekman M, Grunewald S, Clement E. An example of the utility of genomic analysis for fast and accurate clinical diagnosis of complex rare phenotypes. Orphanet J Rare Dis. 2017;12(1):24. doi:10.1186/s13023-017-0582-8.
  • Guan J, Wang H, Lan L, Wang L, Yang J, Xie L. Novel recessive PDZD7 biallelic mutations in two Chinese families with non-syndromic hearing loss. Am J Med Genet A. 2018;176(1):99–106. doi:10.1002/ajmg.a.38477.
  • Chen Q, Zou JH, Shen ZL, Zhang WP, Yang J. 2014. Whirlin and PDZ Domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem. 289(52):36070–88. doi:10.1074/jbc.M114.610535.
  • Zou J, Zheng T, Ren C, Askew C, Liu XP, Pan B. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice. Hum Mol Genet. 2014;23(9):2374–90. doi:10.1093/hmg/ddt629.
  • Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A. PDZD7-MYO7A complex identified in enriched stereocilia membranes. Elife. 2016;5:e18312.
  • Zou J, Chen Q, Almishaal A, Mathur PD, Zheng T, Tian C. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells. Hum Mol Genet. 2017;26(3):624–36. doi:10.1093/hmg/ddw421.
  • Grati M, Shin JB, Weston MD, Green J, Bhat MA, Gillespie PG. Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J Neurosci. 2012;32(41):14288–93. doi:10.1523/Jneurosci.3071-12.2012.
  • Vester A, Velez‐Ruiz G, McLaughlin HM, Program NCS, Lupski JR, Talbot K. A loss‐of‐function variant in the human histidyl‐t RNA synthetase (HARS) gene is neurotoxic in vivo. Human Mutat. 2013;34(1):191–99. doi:10.1002/humu.22210.
  • Abbott JA, Meyer-Schuman R, Lupo V, Feely S, Mademan I, Oprescu SN. Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy. Hum Mutat. 2018;39(3):415–32. doi:10.1002/humu.23380.
  • Safka Brozkova D, Deconinck T, Griffin LB, Ferbert A, Haberlova J, Mazanec R. Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies. Brain. 2015;138(Pt 8):2161–72. doi:10.1093/brain/awv158.
  • Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet. 2008;9:87–107. doi:10.1146/annurev.genom.9.081307.164204.
  • Fiskerstrand T, H’Mida-Ben Brahim D, Johansson S, M’Zahem A, Haukanes BI, Drouot N. Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am J Hum Genet. 2010;87(3):410–17. doi:10.1016/j.ajhg.2010.08.002.
  • Chen DH, Naydenov A, Blankman JL, Mefford HC, Davis M, Sul Y. Two novel mutations in ABHD 12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum Mutat. 2013;34(12):1672–78. doi:10.1002/humu.22437.
  • Nishiguchi KM, Avila-Fernandez A, van Huet RA, Corton M, Perez-Carro R, Martin-Garrido E. Exome sequencing extends the phenotypic spectrum for ABHD12 mutations: from syndromic to nonsyndromic retinal degeneration. Ophthalmology. 2014;121(8):1620–27. doi:10.1016/j.ophtha.2014.02.008.
  • Lerat J, Cintas P, Beauvais-Dzugan H, Magdelaine C, Sturtz F, Lia AS. 2017. A complex homozygous mutation in ABHD12 responsible for PHARC syndrome discovered with NGS and review of the literature. J Peripher Nerv Syst. 22(2):77–84. doi:10.1111/jns.12216.
  • Tingaud-Sequeira A, Raldua D, Lavie J, Mathieu G, Bordier M, Knoll-Gellida A. Functional validation of ABHD12 mutations in the neurodegenerative disease PHARC. Neurobiol Dis. 2017;98:36–51.
  • Frasquet M, Lupo V, Chumillas MJ, Vazquez-Costa JF, Espinos C, Sevilla T. Phenotypical features of two patients diagnosed with PHARC syndrome and carriers of a new homozygous mutation in the ABHD12 gene. J Neurol Sci. 2018;387:134–38. doi:10.1016/j.jns.2018.02.021.
  • Simon GM, Cravatt BF. 2010. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem. 285(15):11051–55. doi:10.1074/jbc.R109.097600.
  • Blankman JL, Long JZ, Trauger SA, Siuzdak G, Cravatt BF. 2013. ABHD12 controls brain lysophosphatidylserine pathways that are deregulated in a murine model of the neurodegenerative disease PHARC. P Natl Acad Sci USA. 110(4):1500–05. doi:10.1073/pnas.1217121110.
  • Patel K, Giese AP, Grossheim J, Hegde RS, Delio M, Samanich J. A novel C-terminal CIB2 (calcium and integrin binding protein 2) mutation associated with non-syndromic hearing loss in a hispanic family. PLoS One. 2015;10(10):e0133082. doi:10.1371/journal.pone.0133082.
  • Seco CZ, Giese AP, Shafique S, Schraders M, Oonk AM, Grossheim M. Novel and recurrent CIB2 variants, associated with nonsyndromic deafness, do not affect calcium buffering and localization in hair cells. Eur J Hum Genet. 2016;24(4):542. doi:10.1038/ejhg.2015.157.
  • Booth K, Kahrizi K, Babanejad M, Daghagh H, Bademci G, Arzhangi S. Variants in CIB2 cause DFNB48 and not USH1J. Clin Genet. 2018;93(4):812–21. doi:10.1111/cge.13170.
  • Talbi S, Bonnet C, Riahi Z, Boudjenah F, Dahmani M, Hardelin J-P. Genetic heterogeneity of congenital hearing impairment in Algerians from the Ghardaïa province. Int J Pediatr Otorhinolaryngol. 2018;112:1–5.
  • Vallone R, Dal Cortivo G, D’Onofrio M, Dell’Orco D. Preferential binding of Mg(2+) over Ca(2+) to CIB2 triggers an allosteric switch impaired in Usher syndrome type 1J. Front Mol Neurosci. 2018;11:274. doi:10.3389/fnmol.2018.00274.
  • Giese APJ, Tang YQ, Sinha GP, Bowl MR, Goldring AC, Parker A. CIB2 interacts with TMC1 and TMC2 and is essential for mechanotransduction in auditory hair cells. Nat Commun. 2017;8(1):43. doi:10.1038/s41467-017-00061-1.
  • Wang Y, Li J, Yao X, Li W, Du H, Tang M. Loss of CIB2 causes profound hearing loss and abolishes mechanoelectrical transduction in mice. Front Mol Neurosci. 2017;10:401.
  • de Castro-miró M, Tonda R, Escudero-Ferruz P, Andrés R, Mayor-Lorenzo A, Castro J. Novel candidate genes and a wide spectrum of structural and point mutations responsible for inherited retinal dystrophies revealed by exome sequencing. PLoS One. 2016;11(12):e0168966. doi:10.1371/journal.pone.0168966.
  • Kumar A, Rajendran V, Sethumadhavan R, Purohit R. 2013. CEP proteins: the knights of centrosome dynasty. Protoplasma. 250(5):965–83. doi:10.1007/s00709-013-0488-9.
  • Fogeron ML, Muller H, Schade S, Dreher F, Lehmann V, Kuhnel A. LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. Nat Commun. 2013;4:1531.
  • Floriot S, Vesque C, Rodriguez S, Bourgain-Guglielmetti F, Karaiskou A, Gautier M. C-Nap1 mutation affects centriole cohesion and is associated with a Seckel-like syndrome in cattle. Nat Commun. 2015;6:6894.
  • Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426(6966):570–74. doi:10.1038/nature02166.
  • Azimzadeh J, Wong ML, Downhour DM, Sanchez Alvarado A, Marshall WF. 2012. Centrosome loss in the evolution of planarians. Science. 335(6067):461–63. doi:10.1126/science.1214457.
  • Kowalewski B, Lamanna WC, Lawrence R, Damme M, Stroobants S, Padva M. Arylsulfatase G inactivation causes loss of heparan sulfate 3-O-sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci U S A. 2012;109(26):10310–15. doi:10.1073/pnas.1202071109.
  • Kruszewski K, Lullmann-Rauch R, Dierks T, Bartsch U, Damme M. 2016. Degeneration of photoreceptor cells in arylsulfatase G-deficient mice. Invest Ophthalmol Vis Sci. 57(3):1120–31. doi:10.1167/iovs.15-17645.
  • Kowalewski B, Heimann P, Ortkras T, Lüllmann-Rauch R, Sawada T, Walkley SU. Ataxia is the major neuropathological finding in arylsulfatase G-deficient mice: similarities and dissimilarities to Sanfilippo disease (mucopolysaccharidosis type III). Hum Mol Genet. 2014;24(7):1856–68. doi:10.1093/hmg/ddu603.
  • Abitbol M, Thibaud JL, Olby NJ, Hitte C, Puech JP, Maurer M. A canine Arylsulfatase G (ARSG) mutation leading to a sulfatase deficiency is associated with neuronal ceroid lipofuscinosis. P Natl Acad Sci USA. 2010;107(33):14775–80. doi:10.1073/pnas.0914206107.
  • Ferrante P, Messali S, Meroni G, Ballabio A. 2002. Molecular and biochemical characterisation of a novel sulphatase gene: arylsulfatase G (ARSG). Eur J Hum Genet. 10(12):813–18. doi:10.1038/sj.ejhg.5200887.
  • Frese MA, Schulz S, Dierks T, Arylsulfatase G. 2008. a novel lysosomal sulfatase. J Biol Chem. 283(17):11388–95. doi:10.1074/jbc.M709917200.
  • Ratzka A, Mundlos S, Vortkamp A. 2010. Expression patterns of sulfatase genes in the developing mouse embryo. Dev Dyn. 239(6):1779–88. doi:10.1002/dvdy.22294.
  • Naz S, Griffith AJ, Riazuddin S, Hampton LL, Battey JF Jr., Khan SN. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet. 2004;41(8):591–95. doi:10.1136/jmg.2004.018523.
  • Donaudy F, Zheng L, Ficarella R, Ballana E, Carella M, Melchionda S. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elongation or organisation. J Med Genet. 2006;43(2):157–61. doi:10.1136/jmg.2005.032086.
  • Sekerkova G, Zheng L, Loomis PA, Mugnaini E, Bartles JR. 2006. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli. Cell Mol Life Sci. 63(19–20):2329–41. doi:10.1007/s00018-006-6148-x.
  • Wang L, Zou J, Shen Z, Song E, Yang J. 2011. Whirlin interacts with espin and modulates its actin-regulatory function: an insight into the mechanism of Usher syndrome type II. Hum Mol Genet. 21(3):692–710. doi:10.1093/hmg/ddr503.
  • Zheng LL, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR. 2000. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell. 102(3):377–85. doi:10.1016/S0092-8674(00)00042-8.
  • Zou JH, Mathur PD, Zheng TH, Wang Y, Almishaal A, Park AH. Individual USH2 proteins make distinct contributions to the ankle link complex during development of the mouse cochlear stereociliary bundle. Hum Mole Genet. 2015;24(24):6944–57. doi:10.1093/hmg/ddv398.
  • O’Hanlon TP, Miller FW. 2002. Genomic organization, transcriptional mapping, and evolutionary implications of the human bi-directional histidyl-tRNA synthetase locus (HARS/HARSL). Biochem Biophys Res Commun. 294(3):609–14. doi:10.1016/S0006-291X(02)00525-9.
  • Wasmuth JJ, Carlock LR. 1986. Chromosomal localization of human gene for histidyl-tRNA synthetase: clustering of genes encoding aminoacyl-tRNA synthetases on human chromosome 5. Somat Cell Mol Genet. 12(5):513–17. doi:10.1007/bf01539922.
  • Abbott JA, Guth E, Kim C, Regan C, Siu VM, Rupar CA. The usher syndrome type IIIB histidyl-tRNA synthetase mutation confers temperature sensitivity. Biochemistry. 2017;56(28):3619–31. doi:10.1021/acs.biochem.7b00114.
  • Navia-Paldanius D, Savinainen JR, Laitinen JT. Biochemical and pharmacological characterization of human α/β-hydrolase domain containing 6 (ABHD6) and 12 (ABHD12). J Lipid Res. 2012;53:2413–24. doi:10.1194/jlr.M030411.
  • Blankman JL, Simon GM, Cravatt BF. 2007. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 14(12):1347–56. doi:10.1016/j.chembiol.2007.11.006.
  • Seki N, Hattori A, Hayashi A, Kozuma S, Ohira M, Hori T-A. Structure, expression profile and chromosomal location of an isolog of DNA-PKcs interacting protein (KIP) gene1. Biochimica Et Biophysica Acta (Bba)-gene Structure and Expression. 1999;1444(1):143–47. doi:10.1016/S0167-4781(98)00253-X.
  • Häger M, Bigotti MG, Meszaros R, Carmignac V, Holmberg J, Allamand V. Cib2 binds integrin α7Bβ1D and is reduced in laminin α2 chain-deficient muscular dystrophy. J Biol Chem. 2008;283(36):24760–69. doi:10.1074/jbc.M801166200.
  • Mayor T, Stierhof Y-D, Tanaka K, Fry AM, Nigg EA. 2000. The centrosomal protein C-Nap1 is required for cell cycle–regulated centrosome cohesion. J Cell Biol. 151(4):837–46. doi:10.1083/jcb.151.4.837.
  • Brunk K, Zhu M, Kratz AS, Haselmann-Weiss U, Claude A, Hoffmann I. Cep78 is a new centriolar protein involved in Plk4-induced centriole overduplication. J Cell Sci. 2016;129:2713–18. doi:10.1242/jcs.184093.
  • Schrauwen I, Hasin-Brumshtein Y, Corneveaux JJ, Ohmen J, White C, Allen AN. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear. Hear Res. 2016;333:266–74.
  • Liu XZ, Hope C, Walsh J, Newton V, Ke XM, Liang CY. Mutations in the myosin VIIA gene cause a wide phenotypic spectrum, including atypical Usher syndrome. Am J Hum Genet. 1998;63(3):909–12. doi:10.1086/302026.
  • Cremers FP, Kimberling WJ, Kulm M, de Brouwer AP, van Wijk E, Te Brinke H. Development of a genotyping microarray for Usher syndrome. J Med Genet. 2007;44(2):153–60. doi:10.1136/jmg.2006.044784.
  • Liu XZ, Hope C, Liang CY, Zou JM, Xu LR, Cole T. A mutation (2314delG) in the Usher syndrome type IIA gene: high prevalence and phenotypic variation. Am J Hum Genet. 1999;64(4):1221–25. doi:10.1086/302332.
  • Blanco-Kelly F, Jaijo T, Aller E, Avila-Fernandez A, Lopez-Molina MI, Gimenez A. Clinical aspects of Usher syndrome and the USH2A gene in a cohort of 433 patients. JAMA Ophthalmol. 2015;133(2):157–64. doi:10.1001/jamaophthalmol.2014.4498.
  • Aller E, Nájera C, Millán JM, Oltra JS, Pérez-Garrigues H, Vilela C. Genetic analysis of 2299delG and C759F mutations (USH2A) in patients with visual and/or auditory impairments. Eur J Hum Genet. 2004;12(5):407. doi:10.1038/sj.ejhg.5201138.
  • Nájera C, Beneyto M, Blanca J, Aller E, Fontcuberta A, Millán JM. Mutations in myosin VIIA (MYO7A) and usherin (USH2A) in Spanish patients with Usher syndrome types I and II, respectively. Hum Mutat. 2002;20(1):76–77. doi:10.1002/humu.9042.
  • Garcia-Garcia G, Aparisi MJ, Jaijo T, Rodrigo R, Leon AM, Avila-Fernandez A. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations. Orphanet J Rare Dis. 2011;6(1):65. doi:10.1186/1750-1172-6-65.
  • Steele-Stallard HB, Le Quesne Stabej P, Lenassi E, Luxon LM, Claustres M, Roux AF. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing. Orphanet J Rare Dis. 2013;8(1):122. doi:10.1186/1750-1172-8-122.
  • Astuto LM, Bork JM, Weston MD, Askew JW, Fields RR, Orten DJ. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness. Am J Hum Genet. 2002;71(2):262–75. doi:10.1086/341558.
  • Valero R, de Castro-miro M, Jimenez-Ochoa S, Rodriguez-Ezcurra JJ, Marfany G, Gonzalez-Duarte R. 2019. Aberrant splicing events associated to CDH23 noncanonical splice site mutations in a proband with atypical Usher syndrome 1. Genes (Basel). 10(10):732. doi:10.3390/genes10100732.
  • Kalay E, de Brouwer AP, Caylan R, Nabuurs SB, Wollnik B, Karaguzel A. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome. J Mol Med (Berl). 2005;83(12):1025–32. doi:10.1007/s00109-005-0719-4.
  • Bashir R, Fatima A, Naz S. 2010. A frameshift mutation in SANS results in atypical Usher syndrome. Clin Genet. 78(6):601–03. doi:10.1111/j.1399-0004.2010.01500.x.
  • Ben Rebeh I, Morinière M, Ayadi L, Benzina Z, Charfedine I, Feki J. Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness. Mol Vis. 2010;16:1898–906. PMID: 21031134.
  • Zina ZB, Masmoudi S, Ayadi H, Chaker F, Ghorbel AM, Drira M. From DFNB2 to Usher syndrome: variable expressivity of the same disease. Am J Med Genet. 2001;101(2):181–83. doi:10.1002/ajmg.1335.
  • Bernal S, Meda C, Solans T, Ayuso C, Garcia‐Sandoval B, Valverde D. Clinical and genetic studies in Spanish patients with Usher syndrome type II: description of new mutations and evidence for a lack of genotype–phenotype correlation. Clin Genet. 2005;68(3):204–14. doi:10.1111/j.1399-0004.2005.00481.x.
  • Pennings RJ, Huygen PL, Cremers WR. 2003. Hearing impairment in Usher syndrome type II. Ann Otol Rhinol Laryngol. 112(9 Pt 1):825. doi:10.1177/000348940311200915.
  • Pennings RJ, Huygen PL, Weston MD, van Aarem A, Wagenaar M, Kimberling WJ. Pure tone hearing thresholds and speech recognition scores in Dutch patients carrying mutations in the USH2A gene. Otol Neurotol. 2003;24(1):58–63. doi:10.1097/00129492-200301000-00013.
  • Wagenaar M, van Aarem A, Huygen P, Pieke-Dahl S, Kimberling W, Cremers C. 1999. Hearing impairment related to age in Usher syndrome types 1B and 2A. Arch Otolaryngol Head Neck Surg. 125(4):441–45. doi:10.1001/archotol.125.4.441.
  • Sadeghi M, Cohn ES, Kelly WJ, Kimberling WJ, Tranebjoerg L, Moller C. 2004. Audiological findings in Usher syndrome types IIa and II (non-IIa). Int J Audiol. 43(3):136–43. doi:10.1080/14992020400050019.