238
Views
4
CrossRef citations to date
0
Altmetric
Research Reports

Exome sequencing identification of susceptibility genes in Chinese patients with keratoconus

, , , , , & show all
Pages 518-525 | Received 07 Nov 2019, Accepted 18 Jul 2020, Published online: 03 Aug 2020

References

  • Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297–319. doi:10.1016/S0039-6257(97)00119-7.
  • Karamichos, D. Keratoconus: Challenges and Emerging Trends. J Mol Genet Med, 2018;12(3):367. doi:10.4172/1747-0862.1000367
  • Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, Valadkhan M, Mortazavi M, Hashemi A, Khabazkhoob M. The Prevalence and Risk Factors for Keratoconus: a Systematic Review and Meta-Analysis. Cornea. 2020;39:263–70. doi:10.1097/ICO.0000000000002150.
  • Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016;134:167–73. doi:10.1001/jamaophthalmol.2015.4776.
  • Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for keratoconus. Biomed Res Int. 2015;2015:795738. doi:10.1155/2015/795738.
  • Sugar J, Macsai MS. What causes keratoconus? Cornea. 2012;31:716–19. doi:10.1097/ICO.0b013e31823f8c72.
  • Li X, Bykhovskaya Y, Haritunians T, Siscovick D, Aldave A, Szczotka-Flynn L, Iyengar SK, Rotter JI, Taylor KD, Rabinowitz YS. A genome-wide association study identifies a potential novel gene locus for keratoconus, one of the commonest causes for corneal transplantation in developed countries. Hum Mol Genet. 2012;21:421–29. doi:10.1093/hmg/ddr460.
  • Burdon KP, Macgregor S, Bykhovskaya Y, Javadiyan S, Li X, Laurie KJ, Muszynska D, Lindsay R, Lechner J, Haritunians T, et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest Ophthalmol Vis Sci. 2011;52:8514–9. doi:10.1167/iovs.11-8261.
  • Liskova P, Hysi PG, Waseem N, Ebenezer ND, Bhattacharya SS, Tuft SJ. Evidence for keratoconus susceptibility locus on chromosome 14: a genome-wide linkage screen using single-nucleotide polymorphism markers. Arch ophthalmol (Chicago, Ill: 1960). 2010;128:1191–5. doi:10.1001/archophthalmol.2010.200.
  • Bisceglia L, De Bonis P, Pizzicoli C, Fischetti L, Laborante A, Di Perna M, Giuliani F, Delle Noci N, Buzzonetti L, Zelante L. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–6. doi:10.1167/iovs.08-2382.
  • da Silva DC, Gadelha BNB, Feitosa AFB, da Silva RG, Albuquerque T, Santos D, Gadelha DNB, Fonseca Schamber-Reis BL. Analysis of VSX1 Variations in Brazilian Subjects with Keratoconus. J Ophthalmic Vis Res. 2018;13:266–73. doi:10.4103/jovr.jovr_116_17.
  • Yildiz E, Bardak H, Gunay M, Bardak Y, Imamoglu S, Ozbas H, Bagci O. Novel Zinc Finger Protein Gene 469 (ZNF469) Variants in Advanced Keratoconus. Curr Eye Res. 2017;42:1396–400. doi:10.1080/02713683.2017.1325910.
  • Saravani R, Yari D, Saravani S, Hasanian-Langroudi F. Correlation between the COL4A3, MMP-9, and TIMP-1 polymorphisms and risk of keratoconus. Jpn J Ophthalmol. 2017;61:218–22. doi:10.1007/s10384-017-0503-3.
  • Mikami T, Meguro A, Teshigawara T, Takeuchi M, Uemoto R, Kawagoe T, Nomura E, Asukata Y, Ishioka M, Iwasaki M, et al. Interleukin 1 beta promoter polymorphism is associated with keratoconus in a Japanese population. Mol Vis. 2013;19:845–51.
  • Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30–5. doi:10.1038/ng.499.
  • van Rensburg SJ, Peeters AV, van Toorn R, Schoeman J, Moremi KE, van Heerden CJ, Kotze MJ. Identification of an iron-responsive subtype in two children diagnosed with relapsing-remitting multiple sclerosis using whole exome sequencing. Mol Genet Metab Rep. 2019;19:100465. doi:10.1016/j.ymgmr.2019.100465.
  • Froukh T, Hawwari A. Autosomal recessive non-syndromic keratoconus: Homozygous frameshift variant in the candidate novel gene GALNT14. Curr Mol Med. in press. 2019;19(9):683–87. doi:10.2174/1566524019666190730095630.
  • Hao XD, Chen P, Zhang YY, Li SX, Shi WY, Gao H. De novo mutations of TUBA3D are associated with keratoconus. Sci Rep. 2017;7:13570. doi:10.1038/s41598-017-13162-0.
  • Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62:770–83. doi:10.1016/j.survophthal.2017.06.009.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi:10.1093/bioinformatics/btp324.
  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303. doi:10.1101/gr.107524.110.
  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi:10.1093/nar/gkq603.
  • Maffucci P, Bigio B, Rapaport F, Cobat A, Borghesi A, Lopez M, Patin E, Bolze A, Shang L, Bendavid M, et al. Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis. Proc Natl Acad Sci U S A. 2019;116:950–59. doi:10.1073/pnas.1808403116.
  • Kabza M, Karolak JA, Rydzanicz M, Szczesniak MW, Nowak DM, Ginter-Matuszewska B, Polakowski P, Ploski R, Szaflik JP, Gajecka M. Collagen synthesis disruption and downregulation of core elements of TGF-beta, Hippo, and Wnt pathways in keratoconus corneas. Eur j human genet. 2017;25:582–90. doi:10.1038/ejhg.2017.4.
  • Todd Kuenstner J, Kali M, Welch C. Whole exome sequencing of patients who resolved Crohn’s disease and complex regional pain syndrome following treatment for paratuberculosis. Gut Pathog. 2019;11:34. doi:10.1186/s13099-019-0311-z.
  • Hiraide T, Ogata T, Watanabe S, Nakashima M, Fukuda T, Saitsu H. Coexistence of a CAV3 mutation and a DMD deletion in a family with complex muscular diseases. Brain Dev. 2019;41:474–79. doi:10.1016/j.braindev.2019.01.005.
  • Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, Kassem L, Park JH, Chatterjee N, Jamain S, et al. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013;18:195–205. doi: 10.1038/mp.2011.157.
  • Jiang X, Detera-Wadleigh SD, Akula N, Mallon BS, Hou L, Xiao T, Felsenfeld G, Gu X, McMahon FJ. Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry. 2019;24:613–24. doi:10.1038/s41380-018-0207-1.
  • Grandi A, Santi A, Campagnoli S, Parri M, De Camilli E, Song C, Jin B, Lacombe A, Castori-Eppenberger S, Sarmientos P, et al. ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in human cancer. Oncotarget. 2016;7:63596–610. doi: 10.18632/oncotarget.11550.
  • Vallabh NA, Romano V, Willoughby CE. Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion. 2017;36:103–13. doi:10.1016/j.mito.2017.05.009.
  • Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016;2016:3164734. doi:10.1155/2016/3164734.
  • Yamagata M, Weiner JA, Sanes JR. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell. 2002;110:649–60. doi:10.1016/S0092-8674(02)00910-8.
  • Krishnaswamy A, Yamagata M, Duan X, Hong YK, Sanes JR. Sidekick 2 directs formation of a retinal circuit that detects differential motion. Nature. 2015;524:466–70. doi:10.1038/nature14682.
  • Fitzgerald J, Holden P, Hansen U. The expanded collagen VI family: new chains and new questions. Connect Tissue Res. 2013;54:345–50. doi:10.3109/03008207.2013.822865.
  • Khawaja AP, Rojas Lopez KE, Hardcastle AJ, Hammond CJ, Liskova P, Davidson AE, Gore DM, Hafford Tear NJ, Pontikos N, Hayat S, et al. Genetic Variants Associated With Corneal Biomechanical Properties and Potentially Conferring Susceptibility to Keratoconus in a Genome-Wide Association Study. JAMA Ophthalmol. 2019;137(9):1015–12. doi:10.1001/jamaophthalmol.2019.2058.
  • Herwig MC, Muller AM, Holz FG, Loeffler KU. Immunolocalization of different collagens in the cornea of human fetal eyes: a developmental approach. Curr Eye Res. 2013;38:60–9. doi:10.3109/02713683.2012.738461.
  • Parnell E, Smith BO, Yarwood SJ. The cAMP sensors, EPAC1 and EPAC2, display distinct subcellular distributions despite sharing a common nuclear pore localisation signal. Cell Signal. 2015;27:989–96. doi:10.1016/j.cellsig.2015.02.009.
  • Tuupanen S, Hanninen UA, Kondelin J, von Nandelstadh P, Cajuso T, Gylfe AE, Katainen R, Tanskanen T, Ristolainen H, Bohm J, et al. Identification of 33 candidate oncogenes by screening for base-specific mutations. Br J Cancer. 2014;111:1657–62. doi:10.1038/bjc.2014.429.
  • Du X, Chen P, Sun D. Mutation analysis of TGFBI and KRT12 in a case of concomitant keratoconus and granular corneal dystrophy. Graefe’s Archi Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2017;255:1779–86. doi:10.1007/s00417-017-3699-5.
  • Balasubramanian SA, Wasinger VC, Pye DC, Willcox MD. Preliminary identification of differentially expressed tear proteins in keratoconus. Mol Vis. 2013;19:2124–34.
  • Chen P, Zhang T, Yuan Z, Shen B, Chen L. Expression of the RNA methyltransferase Nsun5 is essential for developing cerebral cortex. Mol Brain. 2019;12:74. doi:10.1186/s13041-019-0496-6.
  • Mediero S, D’Anna Mardero O, Boto de Los Bueis A, Noval Martin S, Garcia-Minaur S. Keratoconus associated with Williams-Beuren syndrome: a new case report. Int J Ophthalmol. 2017;10:658–60. doi:10.18240/ijo.2017.04.26.
  • Viana MM, Frasson M, Leao LL, Stofanko M, Goncalves-Dornelas H, Cunha Pda S, de Aguiar MJ. A new case of keratoconus associated with Williams-Beuren syndrome. Ophthalmic Genet. 2013;34:174–77. doi:10.3109/13816810.2012.739257.
  • Pinsard L, Touboul D, Vu Y, Lacombe D, Leger F, Colin J. Keratoconus associated with Williams-Beuren syndrome: first case reports. Ophthalmic Genet. 2010;31:252–56. doi:10.3109/13816810.2010.523038.
  • Bardak H, Gunay M, Yildiz E, Bardak Y, Gunay B, Ozbas H, Bagci O. Novel visual system homeobox 1 gene mutations in Turkish patients with keratoconus. Genet mol res. 2016;15. doi:10.4238/gmr15049024.
  • Paliwal P, Singh A, Tandon R, Titiyal JS, Sharma A. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–9.
  • Yu X, Chen B, Zhang X, Shentu X. Identification of seven novel ZNF469 mutations in keratoconus patients in a Han Chinese population. Mol Vis. 2017;23:296–305.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.