8,354
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Stargardt disease and progress in therapeutic strategies

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-26 | Received 15 Mar 2021, Accepted 03 Aug 2021, Published online: 29 Aug 2021

References

  • Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236–46. doi:10.1038/ng0397-236.
  • Armstrong JD, Meyer D, Xu S, Elfervig JL. 1998. Long-term follow-up of Stargardt’s disease and fundus flavimaculatus. Ophthalmology. 105(3):448–58. doi:10.1016/S0161-6420(98)93026-3
  • Fujinami K, Lois N, Mukherjee R, McBain VA, Tsunoda K, Tsubota K, Stone EM, Fitzke FW, Bunce C, Moore AT, et al. A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci. 2013;54(13):8181–90. doi:10.1167/iovs.13-12104.
  • Heath Jeffery RC, Mukhtar SA, McAllister IL, Morgan WH, Mackey DA, Chen FK. Inherited retinal diseases are the most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021;1–9. doi:10.1080/13816810.2021.1913610.
  • Simonelli F, Testa F, Zernant J, Nesti A, Rossi S, Allikmets R, Rinaldi E. 2005. Genotype-phenotype correlation in Italian families with Stargardt disease. Ophthalmic Res. 37(3):159–67. doi:10.1159/000086073.
  • Walia S, Fishman GA. 2009. Natural history of phenotypic changes in Stargardt macular dystrophy. Ophthalmic Genet. 30(2):63–68. doi:10.1080/13816810802695550.
  • Anderson KL, Baird L, Lewis RA, Chinault AC, Otterud B, Leppert M, Lupski JR.A YAC contig encompassing the recessive Stargardt disease gene (STGD) on chromosome 1p. Am J Hum Genet. 1995;57(6):1351–63.
  • Fishman GA.Fundus flavimaculatus. A clinical classification. Arch Ophthalmol. 1976;94(12):2061–67.
  • Cukras CA, Wong WT, Caruso R, Cunningham D, Zein W, Sieving PA. 2012. Centrifugal expansion of fundus autofluorescence patterns in Stargardt disease over time. Arch Ophthalmol. 130(2):171–79. doi:10.1001/archophthalmol.2011.332
  • Sparrow JR, Marsiglia M, Allikmets R, Tsang S, Lee W, Duncker T, Zernant J. 2015. Flecks in Recessive Stargardt Disease: short-Wavelength Autofluorescence, Near-Infrared Autofluorescence, and Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 56(8):5029–39. doi:10.1167/iovs.15-16763
  • McBain VA, Townend J, Lois N. 2012. Progression of retinal pigment epithelial atrophy in stargardt disease. Am J Ophthalmol. 154(1):146–54. doi:10.1016/j.ajo.2012.01.019
  • Klufas MA, Tsui I, Sadda SR, Hosseini H, Schwartz SD. 2018. ULTRAWIDEFIELD AUTOFLUORESENCE IN ABCA4 STARGARDT DISEASE. Retina. 38(2):403–15. doi:10.1097/iae.0000000000001567
  • Fakin A, Robson AG, Fujinami K, Moore AT, Michaelides M, Pei-Wen Chiang J, Webster GEH. 2016. AR. Phenotype and Progression of Retinal Degeneration Associated With Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 57(11):4668–78. doi:10.1167/iovs.16-19829
  • Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC.Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol. 2001;119(3):359–69.
  • Fujinami K, Zernant J, Chana RK, Wright GA, Tsunoda K, Ozawa Y, Tsubota K, Robson AG, Holder GE, Allikmets R, et al. Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology. 2015;122(2):326–34. doi:10.1016/j.ophtha.2014.08.012.
  • Huang D, Thompson JA, Charng J, Chelva E, McLenachan S, Chen SC, Zhang D, McLaren TL, Lamey TM, Constable IJ, et al. Phenotype-genotype correlations in a pseudodominant Stargardt disease pedigree due to a novel ABCA4 deletion-insertion variant causing a splicing defect. Mol Genet Genomic Med. 2020;8(7):e1259. doi:10.1002/mgg3.1259.
  • Al-Ani HH, Sheck L, Vincent AL. Peripheral pigmented lesions in ABCA4-associated retinopathy. Ophthalmic Genet. 2021;1–9. doi:10.1080/13816810.2021.1897850.
  • Arrigo A, Grazioli A, Romano F, Aragona E, Marchese A, Bordato A, Di Nunzio C, Sperti A, Bandello F, Parodi MB. 2020. Multimodal evaluation of central and peripheral alterations in Stargardt disease. A Pilot Study Br J Ophthalmol. 104(9):1234–38. doi:10.1136/bjophthalmol-2019-315148
  • Strauss RW, Muñoz B, Wolfson Y, Sophie R, Fletcher E, Bittencourt MG, Scholl HPN. 2016. Assessment of estimated retinal atrophy progression in Stargardt macular dystrophy using spectral-domain optical coherence tomography. Br J Ophthalmol. 100(7):956–62. doi:10.1136/bjophthalmol-2015-307035
  • Velaga SB, Nittala MG, Jenkins D, Melendez J, Ho A, Strauss RW, Scholl HP, Sadda SR. 2019. Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease. Graefes Arch Clin Exp Ophthalmol. 257(3):549–56. doi:10.1007/s00417-018-04229-3
  • Kugelman J, Alonso-Caneiro D, Chen Y, Arunachalam S, Huang D, Vallis N, Collins MJ, Chen FK. 2020. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning. Transl Vis Sci Technol. 9(11):12. doi:10.1167/tvst.9.11.12
  • Charng J, Xiao D, Mehdizadeh M, Attia MS, Arunachalam S, Lamey TM, Thompson JA, McLaren TL, De Roach JN, Mackey DA, et al. Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease. Sci Rep. 2020;10(1):16491. doi:10.1038/s41598-020-73339-y.
  • Cicinelli MV, Rabiolo A, Brambati M, Viganò C, Bandello F, Battaglia Parodi M. 2020. Factors Influencing Retinal Pigment Epithelium-Atrophy Progression Rate in Stargardt Disease. Transl Vis Sci Technol. 9(7):33. doi:10.1167/tvst.9.7.33.
  • Jauregui R, Nuzbrokh Y, Su P-Y, Zernant J, Allikmets R, Tsang SH, Sparrow JR.Retinal Pigment Epithelium Atrophy in Recessive Stargardt Disease as Measured by Short-Wavelength and Near-Infrared Autofluorescence. Transl Vis Sci Technol. 2021;10(1):3.
  • Müller PL, Birtel J, Herrmann P, Holz FG, Charbel Issa P, Functional Relevance GM. 2019. Structural Correlates of Near Infrared and Short Wavelength Fundus Autofluorescence Imaging in ABCA4-Related Retinopathy. Transl Vis Sci Technol. 8(6):46. doi:10.1167/tvst.8.6.46.
  • Fujinami K, Lois N, Davidson AE, Mackay DS, Hogg CR, Stone EM, Tsunoda K, Tsubota K, Bunce C, Robson AG, et al. A longitudinal study of stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol. 2013;155(6):1075–88. doi:10.1016/j.ajo.2013.01.018.
  • Simonelli F, Testa F, de Crecchio G, Rinaldi E, Hutchinson A, Atkinson A, Dean M, D’Urso M, New AR.ABCR mutations and clinical phenotype in Italian patients with Stargardt disease. Invest Ophthalmol Vis Sci. 2000;41(3):892–97.
  • Fakin A, Robson AG, Chiang JP, Fujinami K, Moore AT, Michaelides M, Holder GE, Webster AR. 2016. The Effect on Retinal Structure and Function of 15 Specific ABCA4 Mutations: a Detailed Examination of 82 Hemizygous Patients. Invest Ophthalmol Vis Sci. 57(14):5963–73. doi:10.1167/iovs.16-20446.
  • Pfau M, Holz FG, Müller PL. 2021. Retinal light sensitivity as outcome measure in recessive Stargardt disease. Br J Ophthalmol. 105(2):258–64. doi:10.1136/bjophthalmol-2020-316201.
  • Schönbach EM, Strauss RW, Muñoz B, Wolfson Y, Ibrahim MA, Birch DG, Zrenner E, Sunness JS, Ip MS, Sadda SR, et al. Longitudinal Microperimetric Changes of Macular Sensitivity in Stargardt Disease After 12 Months: progStar Report No. 13. JAMA Ophthalmol. 2020;138(7):1–8. doi:10.1001/jamaophthalmol.2020.1735.
  • Schönbach EM, Janeschitz-Kriegl L, Strauss RW, Cattaneo M, Fujinami K, Birch DG, Cideciyan AV, Sunness JS, Weleber RG, Ip MS, et al. The Progression of Stargardt Disease using Volumetric Hill of Vision Analyses Over 24 Months: progStar Report No.15. Am J Ophthalmol. 2021; doi:10.1016/j.ajo.2021.04.015.
  • Zahid S, Peeler C, Khan N, Davis J, Mahmood M, Heckenlively JR, Jayasundera T. Digital quantification of Goldmann visual fields (GVFs) as a means for genotype-phenotype comparisons and detection of progression in retinal degenerations. Adv Exp Med Biol. 2014;801:131–37. doi:10.1007/978-1-4614-3209-8_17.
  • Dedania VS, Liu JY, Schlegel D, Andrews CA, Branham K, Khan NW, Musch DC, Heckenlively JR, Jayasundera KT. 2018. Reliability of kinetic visual field testing in children with mutation-proven retinal dystrophies: implications for therapeutic clinical trials. Ophthalmic Genet. 39(1):22–28. doi:10.1080/13816810.2017.1329447.
  • Kaplan J, Gerber S, Larget-Piet D, Rozet JM, Dollfus H, Dufier JL, Odent S, Postel-Vinay A, Janin N, Briard ML, et al. A gene for Stargardt’s disease (fundus flavimaculatus) maps to the short arm of chromosome 1. Nat Genet. 1993;5(3):308–11. doi:10.1038/ng1193-308.
  • Gerber S, Rozet JM, Bonneau D, Souied E, Camuzat A, Dufier JL, Amalric P, Weissenbach J, Munnich A, Kaplan J.A gene for late-onset fundus flavimaculatus with macular dystrophy maps to chromosome 1p13. Am J Hum Genet. 1995;56(2):396–99.
  • Hoyng CB, Poppelaars F, Van De Pol TJ, Kremer H, Pinckers AJ, Deutman AF, Cremers FP. 1996. Genetic fine mapping of the gene for recessive Stargardt disease. Hum Genet. 98(4):500–04. doi:10.1007/s004390050247
  • Weber BH, Sander S, Kopp C, Walker D, Eckstein A, Wissinger B, Zrenner E, Grimm T.Analysis of 21 Stargardt’s disease families confirms a major locus on chromosome 1p with evidence for non-allelic heterogeneity in a minority of cases. Br J Ophthalmol. 1996;80(8):745–49.
  • Azarian SM, Megarity CF, Weng J, Horvath DH, Travis GH. 1998. The human photoreceptor rim protein gene (ABCR): genomic structure and primer set information for mutation analysis. Hum Genet. 102(6):699–705. doi:10.1007/s004390050765
  • Gerber S, Rozet JM, Van De Pol TJ, Hoyng CB, Munnich A, Blankenagel A, Kaplan J, Cremers FP. 1998. Complete exon-intron structure of the retina-specific ATP binding transporter gene (ABCR) allows the identification of novel mutations underlying Stargardt disease. Genomics. 48(1):139–42. doi:10.1006/geno.1997.5164
  • Huckfeldt RM, East JS, Stone EM, Sohn EH. Phenotypic Variation in a Family With Pseudodominant Stargardt Disease. JAMA Ophthalmol. 2016. doi:10.1001/jamaophthalmol.2015.5471.
  • Lambertus S, RAC VH, Bax NM, Hoefsloot LH, Cremers FPM, Boon CJF, Klevering BJ, Hoyng CB. 2015. Early-onset stargardt disease: phenotypic and genotypic characteristics. Ophthalmology. 122(2):335–44. doi:10.1016/j.ophtha.2014.08.032
  • Bax NM, Lambertus S, Cremers FPM, Klevering BJ, Hoyng CB. The absence of fundus abnormalities in Stargardt disease. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2019;257(6):1147–57. doi:10.1007/s00417-019-04280-8.
  • Khan KN, Kasilian M, Mahroo OAR, Tanna P, Kalitzeos A, Robson AG, Tsunoda K, Iwata T, Moore AT, Fujinami K, et al. Early Patterns of Macular Degeneration in ABCA4-Associated Retinopathy. Ophthalmology. 2018;125(5):735–46. doi:10.1016/j.ophtha.2017.11.020.
  • Lee W, Nõupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R. 2014. The external limiting membrane in early-onset Stargardt disease. Invest Ophthalmol Vis Sci. 55(10):6139–49. doi:10.1167/iovs.14-15126
  • Carter-Dawson LD, LaVail MM. 1979. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol. 188(2):245–62. doi:10.1002/cne.901880204
  • Zahid S, Jayasundera T, Rhoades W, Branham K, Khan N, Niziol LM, Musch DC, Heckenlively JR. 2013. Clinical phenotypes and prognostic full-field electroretinographic findings in Stargardt disease. Am J Ophthalmol. 155(3):465–73.e3. doi:10.1016/j.ajo.2012.09.011
  • Tanaka K, Lee W, Zernant J, Schuerch K, Ciccone L, Tsang SH, Sparrow JR, Allikmets R. 2018. The Rapid-Onset Chorioretinopathy Phenotype of ABCA4 Disease. Ophthalmology. 125(1):89–99. doi:10.1016/j.ophtha.2017.07.019
  • Cremers FP, Van De Pol DJ, van Driel M, Den Hollander AI, van Haren FJ, Knoers NV, Tijmes N, Bergen AA, Rohrschneider K, Blankenagel A, et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum Mol Genet 1998;7:355–62.
  • Klevering BJ, Yzer S, Rohrschneider K, Zonneveld M, Allikmets R, Van Den Born LI, Maugeri A, Hoyng CB, Cremers FP. 2004. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet. 12(12):1024–32. doi:10.1038/sj.ejhg.5201258
  • Lorenz B, Preising MN. 2005. Age matters–thoughts on a grading system for ABCA4 mutations. Graefes Arch Clin Exp Ophthalmol. 243(2):87–89. doi:10.1007/s00417-004-1078-5
  • Martinez-Mir A, Bayes M, Vilageliu L, Grinberg D, Ayuso C, Del Rio T, Garcia-Sandoval B, Bussaglia E, Baiget M, Gonzalez-Duarte R, et al. A new locus for autosomal recessive retinitis pigmentosa (RP19) maps to 1p13-1p21. Genomics 1997;40:142–46.
  • Martínez-Mir A, Paloma E, Allikmets R, Ayuso C, Río T, Dean M, Vilageliu L, Gonzàlez-Duarte R, Balcells S. 1998. Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet. 18(1):11–12. doi:10.1038/ng0198-11
  • Rozet JM, Gerber S, Ghazi I, Perrault I, Ducroq D, Souied E, Cabot A, Dufier JL, Munnich A, Kaplan J.Mutations of the retinal specific ATP binding transporter gene (ABCR) in a single family segregating both autosomal recessive retinitis pigmentosa RP19 and Stargardt disease: evidence of clinical heterogeneity at this locus. J Med Genet. 1999;36(6):447–51.
  • Sb C, Ll M, Fa G, Rs M. Functional Analysis and Classification of Homozygous and Hypomorphic ABCA4 Variants Associated with Stargardt Macular Degeneration. Hum Mutat. 2020. doi:10.1002/humu.24100.
  • Cideciyan AV, Swider M, Aleman TS, Sumaroka A, Schwartz SB, Roman MI, Milam AH, Bennett J, Stone EM, Jacobson SG. 2005. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest Ophthalmol Vis Sci. 46(12):4739–46. doi:10.1167/iovs.05-0805
  • Heath Jeffery RC, Thompson JA, Lo J, Lamey TM, McLaren TL, McAllister IL, Mackey DA, Constable IJ, De Roach JN, Chen FK. 2021. Atrophy Expansion Rates in Stargardt Disease Using Ultra-Widefield Fundus Autofluorescence. Ophthalmology Science. 1(1):100005. doi:10.1016/j.xops.2021.100005
  • Heath Jeffery RC, Thompson JA, Lamey TM, McLaren TL, McAllister IL, Constable IJ, Mackey DA, De Roach JN, Chen FK. Classifying ABCA4 mutation severity using age-dependent ultra-widefield fundus autofluorescence-derived total lesion size. Retina. 2021. doi:10.1097/iae.0000000000003227.
  • Fishman GA, Stone EM, Grover S, Derlacki DJ, Haines HL, Hockey RR. 1999. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Archives of Ophthalmology (Chicago, Ill: 1960). 117(4):504–10. doi:10.1001/archopht.117.4.504
  • Allikmets R. 2000. Simple and complex ABCR: genetic predisposition to retinal disease. Am J Hum Genet. 67(4):793–99. doi:10.1086/303100
  • Genead MA, Fishman GA, Stone EM, Allikmets R. 2009. The natural history of stargardt disease with specific sequence mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci. 50(12):5867–71. doi:10.1167/iovs.09-3611
  • Cella W, Greenstein VC, Zernant-Rajang J, Smith TR, Barile G, Allikmets R, Tsang SH. 2009. G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res. 89(1):16–24. doi:10.1016/j.exer.2009.02.001
  • Burke TR, Fishman GA, Zernant J, Schubert C, Tsang SH, Smith RT, Ayyagari R, Koenekoop RK, Umfress A, Ciccarelli ML, et al. Retinal phenotypes in patients homozygous for the G1961E mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci. 2012;53(8):4458–67. doi:10.1167/iovs.11-9166.
  • Lee W, Schuerch K, Zernant J, Collison FT, Bearelly S, Fishman GA, Tsang SH, Sparrow JR, Allikmets R. 2017. Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. Eur J Hum Genet. 25(6):735–43. doi:10.1038/ejhg.2017.13
  • Eh R, Khan M, Ss C, Roosing S, Del Pozo-Valero M, Tm L, Liskova P, Roberts L, Stöhr H, CCW K, et al. Association of Sex With Frequent and Mild ABCA4 Alleles in Stargardt Disease. JAMA Ophthalmol. 2020;doi:10.1001/jamaophthalmol.2020.2990.
  • Leng T, Marmor MF, Kellner U, Thompson DA, Renner AB, Moore W, Sowden JC. 2012. Foveal cavitation as an optical coherence tomography finding in central cone dysfunction. Retina. 32(7):1411–19. doi:10.1097/IAE.0b013e318236e4ea
  • Nõupuu K, Lee W, Zernant J, Tsang SH, Allikmets R. 2014. Structural and genetic assessment of the ABCA4-associated optical gap phenotype. Invest Ophthalmol Vis Sci. 55(11):7217–26. doi:10.1167/iovs.14-14674
  • Noble KG, Carr RE.Stargardt’s disease and fundus flavimaculatus. Arch Ophthalmol. 1979;97(7):1281–85.
  • Westeneng-van Haaften SC, Boon CJF, Cremers FPM, Hoefsloot LH, Den Hollander AI, Hoyng CB. 2012. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 119(6):1199–210. doi:10.1016/j.ophtha.2012.01.005
  • Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR.Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet. 2001;108(4):346–55.
  • Lambertus S, Lindner M, Bax NM, Mauschitz MM, Nadal J, Schmid M, Schmitz-Valckenberg S, Den Hollander AI, Weber BHF, Holz FG, et al. rogression of Late-Onset Stargardt Disease. Invest Ophthalmol Vis Sci. 2016;57(13):5186–91. doi:10.1167/iovs.16-19833.
  • Fujinami K, Sergouniotis PI, Davidson AE, Wright G, Chana RK, Tsunoda K, Tsubota K, Egan CA, Robson AG, Moore AT, et al. Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol. 2013;156(3):487–501.e1. doi:10.1016/j.ajo.2013.05.003.
  • Zernant J, Lee W, Collison FT, Fishman GA, Sergeev YV, Schuerch K, Sparrow JR, Tsang SH, Allikmets R. 2017. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 54(6):404–12. doi:10.1136/jmedgenet-2017-104540
  • Collison FT, Lee W, Fishman GA, Park JC, Zernant J, McAnany JJ, Allikmets R. 2019. CLINICAL CHARACTERIZATION OF STARGARDT DISEASE PATIENTS WITH THE p.N1868I ABCA4 MUTATION. Retina. 39(12):2311–25. doi:10.1097/iae.0000000000002316
  • Chen B, Tosha C, Gorin MB, Nusinowitz S. 2010. Analysis of autofluorescent retinal images and measurement of atrophic lesion growth in Stargardt disease. Exp Eye Res. 91(2):143–52. doi:10.1016/j.exer.2010.03.021
  • Strauss RW, Muñoz B, Ho A, Jha A, Michaelides M, Cideciyan AV, Audo I, Birch DG, Hariri AH, Nittala MG, et al. Progression of Stargardt Disease as Determined by Fundus Autofluorescence in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 9). JAMA Ophthalmol. 2017;135(11):1232–41. doi:10.1001/jamaophthalmol.2017.4152.
  • Burke TR, Duncker T, Woods RL, Greenberg JP, Zernant J, Tsang SH, Smith RT, Allikmets R, Sparrow JR, Delori FC. 2014. Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci. 55(5):2841–52. doi:10.1167/iovs.13-13624
  • Quellec G, Russell SR, Scheetz TE, Stone EM, Abràmoff MD. 2011. Computational quantification of complex fundus phenotypes in age-related macular degeneration and Stargardt disease. Invest Ophthalmol Vis Sci. 52(6):2976–81. doi:10.1167/iovs.10-6232
  • Georgiou M, Kane T, Tanna P, Bouzia Z, Singh N, Kalitzeos A, Strauss RW, Fujinami K, Michaelides M. Prospective Cohort Study of Childhood-Onset Stargardt Disease: fundus Autofluorescence Imaging, Progression, Comparison with Adult-Onset Disease, and Disease Symmetry. Am J Ophthalmol. 2020;211:159–75. doi:10.1016/j.ajo.2019.11.008.
  • Heath Jeffery RC, Chen FK. Stargardt disease: multimodal imaging-A review. Clin Exp Ophthalmol. 2021. doi:10.1111/ceo.13947.
  • Müller PL, Pfau M, Treis T, Pascual-Camps I, Birtel J, Lindner M, Herrmann P, Holz FG. 2020. PROGRESSION OF ABCA4-RELATED RETINOPATHY: prognostic value of demographic, functional, genetic, and imaging parameters. Retina. 40(12):2343–56. doi:10.1097/iae.0000000000002747
  • Shen LL, Sun M, Grossetta Nardini HK, Del Priore LV. 2019. Natural History of Autosomal Recessive Stargardt Disease in Untreated Eyes: a Systematic Review and Meta-analysis of Study- and Individual-Level Data. Ophthalmology. 126(9):1288–96. doi:10.1016/j.ophtha.2019.05.015
  • Allikmets R, Wasserman WW, Hutchinson A, Smallwood P, Nathans J, Rogan PK, Schneider TD, Dean M.Organization of the ABCR gene: analysis of promoter and splice junction sequences. Gene. 1998;215(1):111–22.
  • Nasonkin I, Illing M, Koehler MR, Schmid M, Molday RS, Weber BH.Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum Genet. 1998;102(1):21–26.
  • Tsybovsky Y, Orban T, Molday RS, Taylor D, Palczewski K. 2013. Molecular organization and ATP-induced conformational changes of ABCA4, the photoreceptor-specific ABC transporter. Structure (London, England: 1993). 21(5):854–60. doi:10.1016/j.str.2013.03.001
  • Ahn J, Beharry S, Molday LL, Molday RS. 2003. Functional interaction between the two halves of the photoreceptor-specific ATP binding cassette protein ABCR (ABCA4). Evidence for a non-exchangeable ADP in the first nucleotide binding domain. J Biol Chem. 278(41):39600–08. doi:10.1074/jbc.M304236200
  • Sun H, Smallwood PM, Nathans J.Biochemical defects in ABCR protein variants associated with human retinopathies. Nat Genet. 2000;26(2):242.
  • Quazi F, Lenevich S, Molday RS. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat Commun. 2012;3:925. doi:10.1038/ncomms1927.
  • Tsybovsky Y, Molday RS, Palczewski K. The ATP-Binding Cassette Transporter ABCA4: structural and Functional Properties and Role in Retinal Disease. Adv Exp Med Biol. 2010;703:105–25. doi:10.1007/978-1-4419-5635-4_8.
  • Molday RS, Molday LL.Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disc membranes. Electrophoresis, lectin labeling, and proteolysis studies. J Biol Chem. 1979;254(11):4653–60.
  • Bungert S, Molday LL, Molday RS. 2001. Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters: identification of N-linked glycosylation sites. J Biol Chem. 276(26):23539–46. doi:10.1074/jbc.M101902200
  • Tsybovsky Y, Wang B, Quazi F, Molday RS, Palczewski K. 2011. Posttranslational modifications of the photoreceptor-specific ABC transporter ABCA4. Biochemistry. 50(32):6855–66. doi:10.1021/bi200774w
  • Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem. 2004;73:241–68. doi:10.1146/annurev.biochem.73.011303.073626.
  • Fetsch EE, Davidson AL Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A. 2002;99:9685–90. doi:10.1073/pnas.152204499.
  • Hunke S, Mourez M, Jehanno M, Dassa E, Schneider E.ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking. J Biol Chem. 2000;275(20):15526–34.
  • Rees DC, Johnson E, Lewinson O. 2009. ABC transporters: the power to change. Nat Rev Mol Cell Biol. 10(3):218–27. doi:10.1038/nrm2646
  • Kos V, Ford RC. 2009. The ATP-binding cassette family: a structural perspective. Cellular and molecular life sciences. CMLS. 66(19):3111–26. doi:10.1007/s00018-009-0064-9
  • Linton KJ, Higgins CF. 2007. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Archiv. European Journal of Physiology. 453(5):555–67. doi:10.1007/s00424-006-0126-x
  • Tsybovsky Y, Palczewski K. Expression, purification and structural properties of ABC transporter ABCA4 and its individual domains. Protein Expr Purif. 2014;97:50–60. doi:10.1016/j.pep.2014.02.010.
  • Lenis TL, Hu J, Ng SY, Jiang Z, Sarfare S, Lloyd MB, Esposito NJ, Samuel W, Jaworski C, Bok D, et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc Natl Acad Sci U S A. 2018;115(47):E11120–e7. doi:10.1073/pnas.1802519115.
  • Rattner A, Smallwood PM, Nathans J.Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. J Biol Chem. 2000;275(15):11034–43.
  • Chen C, Thompson DA, Koutalos Y. 2012. Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12. J Biol Chem. 287(29):24662–70. doi:10.1074/jbc.M112.354514
  • Mata NL, Weng J, Travis GH.Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proceedings of the National Academy of Sciences. 2000;97(13):7154–59.
  • Quazi F, Molday RS. 2014. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc Natl Acad Sci U S A. 111(13):5024–29. doi:10.1073/pnas.1400780111
  • Cornelis SS, Bax NM, Zernant J, Allikmets R, Fritsche LG, den Dunnen JT, Ajmal M, Hoyng CB, Cremers FP. 2017. In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum Mutat. 38(4):400–08. doi:10.1002/humu.23165
  • Zernant J, Schubert C, Im KM, Burke T, Brown CM, Fishman GA, Tsang SH, Gouras P, Dean M, Allikmets R. 2011. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci. 52(11):8479–87. doi:10.1167/iovs.11-8182
  • Jiang F, Pan Z, Xu K, Tian L, Xie Y, Zhang X, Chen J, Dong B, Li Y. 2016. Screening of ABCA4 Gene in a Chinese Cohort With Stargardt Disease or Cone-Rod Dystrophy With a Report on 85 Novel Mutations. Invest Ophthalmol Vis Sci. 57(1):145–52. doi:10.1167/iovs.15-18190
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi:10.1038/gim.2015.30.
  • Garces F, Jiang K, Molday LL, Stöhr H, Weber BH, Lyons CJ, Maberley D, Molday RS. 2018. Correlating the Expression and Functional Activity of ABCA4 Disease Variants With the Phenotype of Patients With Stargardt Disease. Invest Ophthalmol Vis Sci. 59(6):2305–15. doi:10.1167/iovs.17-23364
  • Garwin GG, Saari JC. High-performance liquid chromatography analysis of visual cycle retinoids. Methods Enzymol. 2000;316:313–24. doi:10.1016/s0076-6879(00)16731-x.
  • Zhong M, Molday RS. Binding of retinoids to ABCA4, the photoreceptor ABC transporter associated with Stargardt macular degeneration. Methods Mol Biol. 2010;652:163–76. doi:10.1007/978-1-60327-325-1_9.
  • Sun H, Molday RS, Nathans J. 1999. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J Biol Chem. 274(12):8269–81. doi:10.1074/jbc.274.12.8269
  • Beharry S, Zhong M, Molday RS. 2004. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR). J Biol Chem. 279(52):53972–79. doi:10.1074/jbc.M405216200
  • Zhong M, Molday LL, Molday RS. 2009. Role of the C terminus of the photoreceptor ABCA4 transporter in protein folding, function, and retinal degenerative diseases. J Biol Chem. 284(6):3640–49. doi:10.1074/jbc.M806580200
  • Suárez T, Biswas SB, Biswas EE. 2002. Biochemical defects in retina-specific human ATP binding cassette transporter nucleotide binding domain 1 mutants associated with macular degeneration. J Biol Chem. 277(24):21759–67. doi:10.1074/jbc.M202053200
  • Cideciyan AV, Swider M, Aleman TS, Tsybovsky Y, Schwartz SB, Windsor EA, Roman AJ, Sumaroka A, Steinberg JD, Jacobson SG, et al. ABCA4 disease progression and a proposed strategy for gene therapy. Hum Mol Genet. 2009;18(5):931–41. doi:10.1093/hmg/ddn421.
  • Wiszniewski W, Zaremba CM, Yatsenko AN, Jamrich M, Wensel TG, Lewis RA, Lupski JR. 2005. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 14(19):2769–78. doi:10.1093/hmg/ddi310
  • Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annu Rev Genomics Hum Genet. 2006;7:103–24. doi:10.1146/annurev.genom.7.080505.115737.
  • Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. doi:10.1146/annurev.biochem.73.011303.074134.
  • Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, Slobodeniuc V, Kutter C, Watt S, Colak R, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93. doi:10.1126/science.1230612.
  • Gueroussov S, Gonatopoulos-Pournatzis T, Irimia M, Raj B, Lin ZY, Gingras AC, Blencowe BJ. 2015. An alternative splicing event amplifies evolutionary differences between vertebrates. Science. 349(6250):868–73. doi:10.1126/science.aaa8381
  • Schulz HL, Grassmann F, Kellner U, Spital G, Rüther K, Jägle H, Hufendiek K, Rating P, Huchzermeyer C, Baier MJ, et al. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort-Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci. 2017;58(1):394–403. doi:10.1167/iovs.16-19936.
  • Li D, Mastaglia FL, Fletcher S, Wilton SD. 2018. Precision Medicine through Antisense Oligonucleotide-Mediated Exon Skipping. Trends Pharmacol Sci. 39(11):982–94. doi:10.1016/j.tips.2018.09.001
  • López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. 2005. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 579(9):1900–03. doi:10.1016/j.febslet.2005.02.047
  • Sangermano R, Khan M, Cornelis SS, Richelle V, Albert S, Garanto A, Elmelik D, Qamar R, Lugtenberg D, Van Den Born LI, et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 2018;28(1):100–10. doi:10.1101/gr.226621.117.
  • Riera M, Patel A, Burés-Jelstrup A, Corcostegui B, Chang S, Pomares E, Corneo B, Sparrow JR. Generation of two iPS cell lines (FRIMOi003-A and FRIMOi004-A) derived from Stargardt patients carrying ABCA4 compound heterozygous mutations. Stem Cell Res. 2019;36:101389. doi:10.1016/j.scr.2019.101389.
  • Claassen JN, Zhang D, Chen S-C, Moon SY, Lamey T, Thompson JA, McLaren T, De Roach JN, McLenachan S, Chen FK. Generation of the induced pluripotent stem cell line from a patient with autosomal recessive ABCA4-mediated Stargardt Macular Dystrophy. Stem Cell Res. 2019;34:101352. doi:10.1016/j.scr.2018.11.013.
  • Sangermano R, Bax NM, Bauwens M, Van Den Born LI, De Baere E, Garanto A, Collin RW, Goercharn-Ramlal AS, den Engelsman-van Dijk AH, Rohrschneider K, et al. Photoreceptor Progenitor mRNA Analysis Reveals Exon Skipping Resulting from the ABCA4 c.5461-10T–>C Mutation in Stargardt Disease. Ophthalmology. 2016;123(6):1375–85. doi:10.1016/j.ophtha.2016.01.053.
  • Jennings L, Zhang D, Chen SC, Moon SY, Lamey T, Thompson JA, McLaren T, De Roach JN, Chen FK, McLenachan S. Generation of two induced pluripotent stem cell lines from a patient with Stargardt Macular Dystrophy caused by the c.768G>T and c.6079C>T mutations in ABCA4. Stem Cell Res. 2020;48:101947. doi:10.1016/j.scr.2020.101947.
  • Albert S, Garanto A, Sangermano R, Khan M, Bax NM, Hoyng CB, Zernant J, Lee W, Allikmets R, Collin RWJ, et al. Identification and Rescue of Splice Defects Caused by Two Neighboring Deep-Intronic ABCA4 Mutations Underlying Stargardt Disease. Am J Hum Genet. 2018;102(4):517–27. doi:10.1016/j.ajhg.2018.02.008.
  • Garanto A, Duijkers L, Tomkiewicz TZ, Collin RWJ.Antisense Oligonucleotide Screening to Optimize the Rescue of the Splicing Defect Caused by the Recurrent Deep-Intronic ABCA4 Variant c.4539+2001G>A in Stargardt Disease. Genes (Basel). 2019;10(6). doi:10.3390/genes10060452
  • Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;79:100861. doi:10.1016/j.preteyeres.2020.100861.
  • Bauwens M, Garanto A, Sangermano R, Naessens S, Weisschuh N, De Zaeytijd J, Khan M, Sadler F, Balikova I, Van Cauwenbergh C, et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genetics in Medicine: Official Journal of the American College of Medical Genetics. 2019;21(8):1761–71. doi:10.1038/s41436-018-0420-y.
  • Braun TA, Mullins RF, Wagner AH, Andorf JL, Johnston RM, Bakall BB, Deluca AP, Fishman GA, Lam BL, Weleber RG, et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum Mol Genet. 2013;22(25):5136–45. doi:10.1093/hmg/ddt367.
  • Zernant J, Xie Y, Ayuso C, Riveiro-Alvarez R, M-a L-M, Simonelli F, Testa F, Gorin MB, Strom SP, Bertelsen M, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23(25):6797–806. doi:10.1093/hmg/ddu396.
  • Sangermano R, Garanto A, Khan M, Runhart EH, Bauwens M, Bax NM, Van Den Born LI, Khan MI, Cornelis SS, Verheij JBGM, et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genetics in Medicine: Official Journal of the American College of Medical Genetics. 2019;21(8):1751–60. doi:10.1038/s41436-018-0414-9.
  • Murphy D, Cieply B, Carstens R, Ramamurthy V, The Musashi SP. 2016. 1 Controls the Splicing of Photoreceptor-Specific Exons in the Vertebrate Retina. PLoS Genet. 12(8):e1006256–e. doi:10.1371/journal.pgen.1006256
  • Sterne-Weiler T, Sanford JR. 2014. Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. 15(1):201. doi:10.1186/gb4150
  • Saari JC. Vitamin A metabolism in rod and cone visual cycles. Annu Rev Nutr. 2012;32:125–45. doi:10.1146/annurev-nutr-071811-150748.
  • Molday RS. 2007. ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr. 39(5–6):507–17. doi:10.1007/s10863-007-9118-6
  • Kim SR, Nakanishi K, Itagaki Y, Sparrow JR. 2006. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res. 82(5):828–39. doi:10.1016/j.exer.2005.10.004
  • Finnemann SC, Leung LW, Rodriguez-Boulan E. The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2002;99(6):3842–47. doi:10.1073/pnas.052025899.
  • Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME.Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci. 2000;41(8):2303–08.
  • Sparrow JR, Nakanishi K, Parish CA.The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci. 2000;41(7):1981–89.
  • Kim SR, Jockusch S, Itagaki Y, Turro NJ, Sparrow JR.Mechanisms involved in A2E oxidation. Exp Eye Res. 2008;86(6):975–82.
  • Zhou J, Jang YP, Kim SR, Sparrow JR. Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 2006;103(44):16182–87. doi:10.1073/pnas.0604255103.
  • Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. 1999. Insights into the Function of Rim Protein in Photoreceptors and Etiology of Stargardt’s Disease from the Phenotype in abcr Knockout Mice. Cell. 98(1):13–23. doi:10.1016/s0092-8674(00)80602-9
  • Charbel Issa P, Barnard AR, Singh MS, Carter E, Jiang Z, Radu RA, Schraermeyer U, MacLaren RE. 2013. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease–correlation with accumulation of A2E, retinal function, and histology. Invest Ophthalmol Vis Sci. 54(8):5602–12. doi:10.1167/iovs.13-11688
  • Sparrow JR, Blonska A, Flynn E, Duncker T, Greenberg JP, Secondi R, Ueda K, Delori FC. 2013. Quantitative fundus autofluorescence in mice: correlation with HPLC quantitation of RPE lipofuscin and measurement of retina outer nuclear layer thickness. Invest Ophthalmol Vis Sci. 54(4):2812–20. doi:10.1167/iovs.12-11490
  • Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH.Delayed dark-adaptation and lipofuscin accumulation in abcr± mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2001;42(8):1685–90.
  • Radu RA, Mata NL, Bagla A, Travis GH. 2004. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci U S A. 101(16):5928–33. doi:10.1073/pnas.0308302101
  • Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M, McMullen S, Travis GH, Bok D. 2011. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem. 286(21):18593–601. doi:10.1074/jbc.M110.191866
  • Radu RA, Yuan Q, Hu J, Peng JH, Lloyd M, Nusinowitz S, Bok D, Travis GH. 2008. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation. Invest Ophthalmol Vis Sci. 49(9):3821–29. doi:10.1167/iovs.07-1470
  • Wu L, Nagasaki T, Sparrow JR. Photoreceptor cell degeneration in Abcr (-/-) mice. Adv Exp Med Biol. 2010;664:533–39. doi:10.1007/978-1-4419-1399-9_61.
  • Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ. 2018;6:e5215. doi:10.7717/peerj.5215.
  • Ma L, Kaufman Y, Zhang J, Washington I. 2011. C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem. 286(10):7966–74. doi:10.1074/jbc.M110.178657
  • Molday LL, Wahl D, Sarunic MV, Molday RS. 2018. Localization and functional characterization of the p.Asn965Ser (N965S) ABCA4 variant in mice reveal pathogenic mechanisms underlying Stargardt macular degeneration. Hum Mol Genet. 27(2):295–306. doi:10.1093/hmg/ddx400
  • Maeda A, Maeda T, Golczak M, Palczewski K. 2008. Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem. 283(39):26684–93. doi:10.1074/jbc.M804505200
  • Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL, Matsuyama S, Palczewski K. 2009. Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem. 284(22):15173–83. doi:10.1074/jbc.M900322200
  • Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A, Palczewski K. 2012. Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. J Biol Chem. 287(7):5059–69. doi:10.1074/jbc.M111.315432
  • Usui S, Oveson BC, Lee SY, Jo YJ, Yoshida T, Miki A, Miki K, Iwase T, Lu L, Campochiaro PA. 2009. NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa. J Neurochem. 110(3):1028–37. doi:10.1111/j.1471-4159.2009.06195.x
  • Mäkeläinen S, Gòdia M, Hellsand M, Viluma A, Hahn D, Makdoumi K, Zeiss CJ, Mellersh C, Ricketts SL, Narfström K, et al. An ABCA4 loss-of-function mutation causes a canine form of Stargardt disease. PLoS Genet. 2019;15(3):e1007873. doi:10.1371/journal.pgen.1007873.
  • Huang D, Fletcher S, Wilton S, Palmer N, McLenachan S, Mackey D, Chen F. 2017. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision. 1(3):22. doi:10.3390/vision1030022
  • Colella P, Auricchio A. 2010. AAV-Mediated Gene Supply for Treatment of Degenerative and Neovascular Retinal Diseases. Curr Gene Ther. 10(5):371–80. doi:10.2174/156652310793180670
  • Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D.Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina (Philadelphia, Pa). 2012;32(1):183–88.
  • Kubota R, Al-Fayoumi S, Mallikaarjun S, Patil S, Bavik C, Chandler JW.Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina (Philadelphia, Pa). 2014;34(3):603–09.
  • Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A. 2003;100(8):4742–47. doi:10.1073/pnas.0737855100.
  • Sparrow JR. 2003. Therapy for macular degeneration: insights from acne. Proc Natl Acad Sci U S A. 100(8):4353–54. doi:10.1073/pnas.1031478100
  • Weleber RG, Denman ST, Hanifin JM, Cunningham WJ. 1986. Abnormal retinal function associated with isotretinoin therapy for acne. Arch Ophthalmol. 104(6):831–37. doi:10.1001/archopht.1986.01050180065031
  • Radu RA, Han Y, Bui TV, Nusinowitz S, Bok D, Lichter J, Widder K, Travis GH, Mata NL. 2005. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci. 46(12):4393–401. doi:10.1167/iovs.05-0820
  • Dobri N, Qin Q, Kong J, Yamamoto K, Liu Z, Moiseyev G, Ma JX, Allikmets R, Sparrow JR, Petrukhin K. 2013. A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis. Invest Ophthalmol Vis Sci. 54(1):85–95. doi:10.1167/iovs.12-10050
  • Samuel W, Kutty RK, Nagineni S, Vijayasarathy C, Chandraratna RA, Wiggert B. 2006. N-(4-hydroxyphenyl)retinamide induces apoptosis in human retinal pigment epithelial cells: retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153. J Cell Physiol. 209(3):854–65. doi:10.1002/jcp.20774
  • Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G, Cioffi CL, Petrukhin K. A non-retinoid antagonist of Retinol-Binding Protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem. 2018. doi:10.1074/jbc.RA118.002062.
  • Kaufman Y, Ma L, Washington I. 2011. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem. 286(10):7958–65. doi:10.1074/jbc.M110.178640
  • Charbel Issa P, Barnard AR, Herrmann P, Washington I, MacLaren RE. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112(27):8415–20. doi:10.1073/pnas.1506960112.
  • Boye SE, Boye SL, Lewin AS, Hauswirth WW. 2013. A comprehensive review of retinal gene therapy. Mol Ther. 21(3):509–19. doi:10.1038/mt.2012.280
  • Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018;65:50–76. doi:10.1016/j.preteyeres.2018.02.002.
  • Zhang N, Tsybovsky Y, Kolesnikov AV, Rozanowska M, Swider M, Schwartz SB, et al. Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum Mol Genet. 2015;24(11):3220–37. doi:10.1093/hmg/ddv073
  • Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res. 2014;43:108–28. doi:10.1016/j.preteyeres.2014.08.001.
  • Wen R, Tao W, Li Y, Sieving PA. CNTF. and retina. Prog Retin Eye Res. 2012;31(2):136–51. doi:10.1016/j.preteyeres.2011.11.005.
  • Tao W, Wen R, Goddard MB, Sherman SD, O’Rourke PJ, Stabila PF, Bell WJ, Dean BJ, Kauper KA, Budz VA, et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2002;43:3292–98.
  • Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103(10):3896–901. doi:10.1073/pnas.
  • Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W. 2013. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol. 156(2):283–92.e1. doi:10.1016/j.ajo.2013.03.021
  • Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME. Long-term Follow-up of Patients With Retinitis Pigmentosa Receiving Intraocular Ciliary Neurotrophic Factor Implants. Am J Ophthalmol. 2016;170:10–14. doi:10.1016/j.ajo.2016.07.013.
  • Kassa E, Ciulla TA, Hussain RM, Dugel PU. 2019. Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin Biol Ther. 19(4):335–42. doi:10.1080/14712598.2019.1575358
  • Lenis TL, Sarfare S, Jiang Z, Lloyd MB, Bok D, Radu RA. Complement modulation in the retinal pigment epithelium rescues photoreceptor degeneration in a mouse model of Stargardt disease. Proc Natl Acad Sci U S A. 2017;114(15):3987–92. doi:10.1073/pnas.1620299114.
  • Drolet DW, Green LS, Gold L, Janjic N. 2016. Fit for the Eye: aptamers in Ocular Disorders. Nucleic Acid Ther. 26(3):127–46. doi:10.1089/nat.2015.0573
  • Piccardi M, Fadda A, Martelli F, Marangoni D, Magli A, Minnella AM, Bertelli M, Di Marco S, Bisti S, Antioxidant Saffron FB. Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients. 2019;11:10. doi:10.3390/nu11102461.
  • Puntel A, Maeda A, Golczak M, Gao SQ, Yu G, Palczewski K, Lu ZR. Prolonged prevention of retinal degeneration with retinylamine loaded nanoparticles. Biomaterials. 2015;44:5. doi:10.1016/j.biomaterials.2014.12.019.
  • Yu G, Wu X, Ayat N, Maeda A, Gao SQ, Golczak M, Palczewski K, Lu ZR. 2014. Multifunctional PEG retinylamine conjugate provides prolonged protection against retinal degeneration in mice. Biomacromolecules. 15(12):4570–78. doi:10.1021/bm501352s
  • Orban T, Leinonen H, Getter T, Dong Z, Sun W, Gao S, Veenstra A, Heidari-Torkabadi H, Kern TS, Kiser PD, et al. A Combination of G Protein-Coupled Receptor Modulators Protects Photoreceptors from Degeneration. J Pharmacol Exp Ther. 2018;364(2):207–20. doi:10.1124/jpet.117.245167.
  • Prokopiou E, Kolovos P, Kalogerou M, Neokleous A, Nicolaou O, Sokratous K, Kyriacou K, Georgiou T. 2018. Omega-3 Fatty Acids Supplementation: therapeutic Potential in a Mouse Model of Stargardt Disease. Invest Ophthalmol Vis Sci. 59(7):2757–67. doi:10.1167/iovs.17-23523
  • Saad L, Can Vitamin WI. A be Improved to Prevent Blindness due to Age-Related Macular Degeneration, Stargardt Disease and Other Retinal Dystrophies? Adv Exp Med Biol. 2016;854:355–61. doi:10.1007/978-3-319-17121-0_47.
  • Hussain RM, Gregori NZ, Ciulla TA, Lam BL. 2018. Pharmacotherapy of retinal disease with visual cycle modulators. Expert Opin Pharmacother. 19(5):471–81. doi:10.1080/14656566.2018.1448060
  • Lee JH, Wang JH, Chen J, Li F, Edwards TL, Hewitt AW, Liu GS. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2018. doi:10.1016/j.preteyeres.2018.08.003.
  • Yanik M, Muller B, Song F, Gall J, Wagner F, Wende W, Lorenz B, Stieger K. In vivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Prog Retin Eye Res. 2017;56:1–18. doi:10.1016/j.preteyeres.2016.09.001.
  • Lipinski DM, Thake M, MacLaren RE. Clinical applications of retinal gene therapy. Prog Retin Eye Res. 2013;32:22–47. doi:10.1016/j.preteyeres.2012.09.001.
  • Tamboli V, Mishra GP, Mitrat AK. 2011. Polymeric vectors for ocular gene delivery. Ther Deliv. 2(4):523–36. doi:10.4155/tde.11.20
  • Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, Kim SR, Maguire A, Rex TS, Di Vicino U, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118(5):1955–64. doi:10.1172/JCI34316.
  • Dong B, Nakai H, Xiao W. 2010. Characterization of genome integrity for oversized recombinant AAV vector. Molecular Therapy: The Journal of the American Society of Gene Therapy. 18(1):87–92. doi:10.1038/mt.2009.258
  • Lai Y, Yue Y, Duan D. 2010. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Molecular therapy. The Journal of the American Society of Gene Therapy. 18(1):75–79. doi:10.1038/mt.2009.256
  • Wu Z, Yang H, Colosi P. 2010. Effect of genome size on AAV vector packaging. Molecular Therapy: The Journal of the American Society of Gene Therapy. 18(1):80–86. doi:10.1038/mt.2009.255
  • Hirsch ML, Agbandje-McKenna M, Samulski RJ. 2010. Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Molecular Therapy: The Journal of the American Society of Gene Therapy. 18(1):6–8. doi:10.1038/mt.2009.280
  • Yan Z, Zhang Y, Duan D, Engelhardt JF. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A. 2000;97:6716–21. doi:10.1073/pnas.97.12.6716
  • Duan D, Yue Y, Engelhardt JF. 2001. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Molecular Therapy: The Journal of the American Society of Gene Therapy. 4(4):383–91. doi:10.1006/mthe.2001.0456
  • Ghosh A, Yue Y, Lai Y, Duan D. 2008. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Molecular Therapy: The Journal of the American Society of Gene Therapy. 16(1):124–30. doi:10.1038/sj.mt.6300322
  • Trapani I, Colella P, Sommella A, Iodice C, Cesi G, De Simone S, Marrocco E, Rossi S, Giunti M, Palfi A, et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med. 2014;6(2):194–211. doi:10.1002/emmm.201302948.
  • Dual TI. AAV Vectors for Stargardt Disease. Methods Mol Biol. 2018;1715:153–75. doi:10.1007/978-1-4939-7522-8_11.
  • Trapani I, Toriello E, De Simone S, Colella P, Iodice C, Polishchuk EV, Sommella A, Colecchi L, Rossi S, Simonelli F, et al. Improved dual AAV vectors with reduced expression of truncated proteins are safe and effective in the retina of a mouse model of Stargardt disease. Hum Mol Genet. 2015;24(23):6811–25. doi:10.1093/hmg/ddv386.
  • Colella P, Trapani I, Cesi G, Sommella A, Manfredi A, Puppo A, Iodice C, Rossi S, Simonelli F, Giunti M, et al. Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther. 2014;21(4):450–56. doi:10.1038/gt.2014.8.
  • De Silva SR, Charbel Issa P, Singh MS, Lipinski DM, Barnea-Cramer AO, Walker NJ, Barnard AR, Hankins MW, MacLaren RE. 2016. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(-/-) mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Ther. 23(11):767–74. doi:10.1038/gt.2016.54
  • Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, Zernant-Rajang J, Kan O, Iqball S, Naylor S, et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 2008;15(19):1311–20. doi:10.1038/gt.2008.78.
  • Binley K, Widdowson P, Loader J, Kelleher M, Iqball S, Ferrige G, de Belin J, Carlucci M, Angell-Manning D, Hurst F, et al. Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease. Invest Ophthalmol Vis Sci. 2013;54(6):4061–71. doi:10.1167/iovs.13-11871.
  • Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. 2012. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest. 122(9):3221–26. doi:10.1172/JCI64833
  • Han Z, Conley SM, Naash MI. Gene therapy for Stargardt disease associated with ABCA4 gene. Adv Exp Med Biol. 2014;801:719–24. doi:10.1007/978-1-4614-3209-8_90.
  • Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI. 2010. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 24(4):1178–91. doi:10.1096/fj.09-139147
  • Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. 2012. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PloS One. 7(12):e52189. doi:10.1371/journal.pone.0052189
  • Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PloS One. 2006;1:e38. doi:10.1371/journal.pone.0000038.
  • Conley SM, Naash MI. 2010. Nanoparticles for retinal gene therapy. Prog Retin Eye Res. 29(5):376–97. doi:10.1016/j.preteyeres.2010.04.004
  • Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PloS One. 2009;4(10):e7410. doi:10.1371/journal.pone.0007410.
  • Paques F, Meganucleases DP.DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Ther. 2007;7(1):49–66.
  • Bogdanove AJ, Voytas DF. 2011. TAL effectors: customizable proteins for DNA targeting. Science (New York, NY). 333(6051):1843–46. doi:10.1126/science.1204094
  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 2010. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 11(9):636–46. doi:10.1038/nrg2842
  • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157(6):1262–78. doi:10.1016/j.cell.2014.05.010
  • Rouet P, Smih F, Jasin M.Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106.
  • Davis L, Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. 2014;111:E924–32. doi:10.1073/pnas.1400236111.
  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 533(7603):420–24. doi:10.1038/nature17946
  • Cox DB, Platt RJ, Zhang F. 2015. Therapeutic genome editing: prospects and challenges. Nat Med. 21(2):121–31. doi:10.1038/nm.3793
  • Chuang K, Fields MA, Del Priore LV.Potential of Gene Editing and Induced Pluripotent Stem Cells (iPSCs) in Treatment of Retinal Diseases. Yale J Biol Med. 2017;90(4):635–42.
  • Hung SSC, McCaughey T, Swann O, Pebay A, Hewitt AW. Genome engineering in ophthalmology: application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res. 2016;53:1–20. doi:10.1016/j.preteyeres.2016.05.001.
  • Er B, JC G, Ja C, Jr T, Lr B, Kr C, Av D, Jh F, Ks W, La W, et al. CRISPR-Cas9 genome engineering: treating inherited retinal degeneration. Prog Retin Eye Res. 2018; doi:10.1016/j.preteyeres.2018.03.003.
  • Moore CBT, Christie KA, Marshall J, Nesbit MA. Personalised genome editing - The future for corneal dystrophies. Prog Retin Eye Res. 2018. doi:10.1016/j.preteyeres.2018.01.004.
  • Lieber MR. 2008. The mechanism of human nonhomologous DNA end joining. J Biol Chem. 283(1):1–5. doi:10.1074/jbc.R700039200
  • Sfeir A, Symington LS. 2015. Microhomology-Mediated End Joining: a Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci. 40(11):701–14. doi:10.1016/j.tibs.2015.08.006
  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 551(7681):464–71. doi:10.1038/nature24644
  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 2018; doi:10.1038/s41591-018-0050-6.
  • Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018. doi:10.1038/s41591-018-0049-z.
  • Wilton SD, Fletcher S.RNA splicing manipulation: strategies to modify gene expression for a variety of therapeutic outcomes. Curr Gene Ther. 2011;11(4):259–75.
  • Gerard X, Perrault I, Munnich A, Kaplan J, Rozet JM. Intravitreal Injection of Splice-switching Oligonucleotides to Manipulate Splicing in Retinal Cells. Mol Ther Nucleic Acids. 2015;4:e250. doi:10.1038/mtna.2015.24.
  • Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, Roman AJ, Sumaroka A, Han IC, Hochstedler MD, et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med. 2019;25(2):225–28. doi:10.1038/s41591-018-0295-0.
  • Kim J, Hu C, Moufawad El Achkar C, Le B, Douville J, Larson A, Mk P, Sf G, Ea L, Kuniholm A, et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N Engl J Med. 2019;381(17):1644–52. doi:10.1056/NEJMoa1813279.
  • Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res. 2017;58:1–27. doi:10.1016/j.preteyeres.2017.01.004.
  • Ramsden CM, Powner MB, Carr AJ, Smart MJ, Da Cruz L, Coffey PJ. 2013. Stem cells in retinal regeneration: past, present and future. Development (Cambridge, England). 140(12):2576–85. doi:10.1242/dev.092270
  • Brandl C, Zimmermann SJ, Milenkovic VM, Rosendahl SM, Grassmann F, Milenkovic A, Hehr U, Federlin M, Wetzel CH, Helbig H, et al. In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC). Neuromolecular Med. 2014;16(3):551–64. doi:10.1007/s12017-014-8308-8.
  • Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, Ahmado A, Gias C, et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61. doi:10.1016/j.expneurol.2008.09.007.
  • Kokkinaki M, Sahibzada N, Golestaneh N. 2011. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells (Dayton, Ohio). 29(5):825–35. doi:10.1002/stem.635
  • Zhu D, Deng X, Spee C, Sonoda S, Hsieh CL, Barron E, Pera M, Hinton DR. 2011. Polarized secretion of PEDF from human embryonic stem cell-derived RPE promotes retinal progenitor cell survival. Invest Ophthalmol Vis Sci. 52(3):1573–85. doi:10.1167/iovs.10-6413
  • Carr AJ, Vugler A, Lawrence J, Chen LL, Ahmado A, Chen FK, Semo M, Gias C, Da Cruz L, Moore HD, et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis. 2009;15:283–95.
  • Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5(4):396–408. doi:10.1016/j.stem.2009.07.002.
  • Fields M, Cai H, Gong J, Del Priore L. Potential of Induced Pluripotent Stem Cells (iPSCs) for Treating Age-Related Macular Degeneration (AMD). Cells. 2016;5:4. doi:10.3390/cells5040044.
  • Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. 2004. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 6(3):217–45. doi:10.1089/clo.2004.6.217
  • Peng S, Gan G, Qiu C, Zhong M, An H, Adelman RA, Rizzolo LJ. 2013. Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment epithelium: transcriptome and functional analysis. Stem Cells Transl Med. 2(7):534–44. doi:10.5966/sctm.2012-0134
  • Liu Z, Jiang R, Yuan S, Wang N, Feng Y, Hu G, Zhu X, Huang K, Ma J, Xu G, et al. Integrated analysis of DNA methylation and RNA transcriptome during in vitro differentiation of human pluripotent stem cells into retinal pigment epithelial cells. PLoS One. 2014;9(3):e91416. doi:10.1371/journal.pone.0091416.
  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, MJ A, Ji H, Ehrlich LI, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–90. doi:10.1038/nature09342.
  • Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y, et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci 2004;45:1020–25.
  • Westenskow PD, Bucher F, Bravo S, Kurihara T, Feitelberg D, Paris LP, Aguilar E, Lin JH, Friedlander M. iPSC-Derived Retinal Pigment Epithelium Allografts Do Not Elicit Detrimental Effects in Rats: a Follow-Up Study. Stem Cells Int. 2016;2016:8470263. doi:10.1155/2016/8470263.
  • Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ, Egli D, Tsang SH. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Molecular Medicine (Cambridge, Mass). 2012;18:1312–19. doi:10.2119/molmed.2012.00242.
  • Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4(12):e8152. doi:10.1371/journal.pone.0008152.
  • Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S, Bischoff N, Sauve Y, Lanza R. 2006. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 8(3):189–99. doi:10.1089/clo.2006.8.189
  • Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet. 379(9817):713–20. doi:10.1016/s0140-6736(12)60028-2
  • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman J-P, Davis JL, Heilwell G, Spirn M, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet. 2015;385(9967):509–16. doi:10.1016/s0140-6736(14)61376-3.
  • Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, Robinson M, Rosenthal AN, Innes W, Weleber RG, et al. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration. Ophthalmology. 2018;125(11):1765–75. doi:10.1016/j.ophtha.2018.04.037.
  • Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N. 2006. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells. 24(2):221–29. doi:10.1634/stemcells.2005-0188
  • Cuevas E, Parmar P, Sowden JC. Restoring Vision Using Stem Cells and Transplantation. Adv Exp Med Biol. 2019;1185:563–67. doi:10.1007/978-3-030-27378-1_92.
  • Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019;69:38–56. doi:10.1016/j.preteyeres.2018.11.003.
  • MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444(7116):203–07. doi:10.1038/nature05161.
  • Akimoto M, Cheng H, Zhu D, Brzezinski JA, Khanna R, Filippova E, Oh EC, Jing Y, Linares JL, Brooks M, et al. Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Proc Natl Acad Sci U S A. 2006;103(10):3890–95. doi:10.1073/pnas.0508214103.
  • Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103. doi:10.1038/nature10997.
  • Barber AC, Hippert C, Duran Y, West EL, Bainbridge JW, Warre-Cornish K, Luhmann UF, Lakowski J, Sowden JC, Ali RR, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A. 2013;110(1):354–59. doi:10.1073/pnas.1212677110.
  • Santos-Ferreira T, Postel K, Stutzki H, Kurth T, Zeck G, Ader M. 2015. Daylight vision repair by cell transplantation. Stem Cells. 33(1):79–90. doi:10.1002/stem.1824
  • Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, Barnea-Cramer A, Duncan I, MacLaren RE. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7:13537. doi:10.1038/ncomms13537.
  • Llonch S, Carido M, Ader M. 2018. Organoid technology for retinal repair. Dev Biol. 433(2):132–43. doi:10.1016/j.ydbio.2017.09.028
  • McLenachan S, Zhang D, Hao E, Zhang L, Chen SC, Chen FK. 2017. Human limbal neurospheres prevent photoreceptor cell death in a rat model of retinal degeneration. Clin Exp Ophthalmol. 45(6):613–24. doi:10.1111/ceo.12940
  • Park SS. 2016. Cell Therapy Applications for Retinal Vascular Diseases: diabetic Retinopathy and Retinal Vein Occlusion. Invest Ophthalmol Vis Sci. 57(5):ORSFj1–ORSFj10. doi:10.1167/iovs.15-17594
  • Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM.Isolation of putative progenitor endothelial cells for angiogenesis. Science (New York, NY). 1997;275(5302):964–67.
  • Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, Zawadzki RJ, Werner JS, Nolta JA. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65. doi:10.1016/j.preteyeres.2016.10.002.
  • Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J.Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2015;56(1):81–89.
  • Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrott MB, Rosenfeld PJ, Flynn HW Jr., Goldberg JL. 2017. Vision Loss after Intravitreal Injection of Autologous “Stem Cells” for AMD. N Engl J Med. 376(11):1047–53. doi:10.1056/NEJMoa1609583
  • Jacobson SG, Matsui R, Sumaroka A, Cideciyan AV. 2016. Retinal Structure Measurements as Inclusion Criteria for Stem Cell-Based Therapies of Retinal Degenerations. Invest Ophthalmol Vis Sci. 57(5):ORSFn1–9. doi:10.1167/iovs.15-17654
  • Dalkara D, Goureau O, Marazova K, Sahel JA. 2016. Let There Be Light: gene and Cell Therapy for Blindness. Hum Gene Ther. 27(2):134–47. doi:10.1089/hum.2015.147
  • Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. 2008. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 105(41):16009–14. doi:10.1073/pnas.0806114105
  • Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, Milosavljevic N, Pienaar A, Bedford R, Davis KE, Bishop PN, Lucas RJ. 2015. Restoration of Vision with Ectopic Expression of Human Rod Opsin. Curr Biol. 25(16):2111–22. doi:10.1016/j.cub.2015.07.029
  • Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: fundamentals and systems. Prog Retin Eye Res. 2016;53:21–47. doi:10.1016/j.preteyeres.2016.05.002.
  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH. 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 50(1):23–33. doi:10.1016/j.neuron.2006.02.026
  • Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329(5990):413–17. doi:10.1126/science.1190897.
  • Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA, Arman AC, Janani R, Boye SE, Boye SL, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19(7):1220–29. doi:10.1038/mt.2011.69.
  • Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P, Desrosiers M, Bamberg E, Sahel JA, Picaud S, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. Mol Ther. 2015;23(1):7–16. doi:10.1038/mt.2014.154.
  • Garita-Hernandez M, Lampič M, Chaffiol A, Guibbal L, Routet F, Santos-Ferreira T, Gasparini S, Borsch O, Gagliardi G, Reichman S, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun. 2019;10(1):4524. doi:10.1038/s41467-019-12330-2.
  • Cheng DL, Greenberg PB, Borton DA. 2017. Advances in Retinal Prosthetic Research: a Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives. Curr Eye Res. 42(3):334–47. doi:10.1080/02713683.2016.1270326
  • YH L, Da Cruz L. The Argus((R)) II Retinal Prosthesis System. Prog Retin Eye Res. 2016;50:89–107. doi:10.1016/j.preteyeres.2015.09.003.
  • Endo T, Fujikado T, Hirota M, Kanda H, Morimoto T, Nishida K. 2018. Light localization with low-contrast targets in a patient implanted with a suprachoroidal-transretinal stimulation retinal prosthesis. Graefes Arch Clin Exp Ophthalmol. 256(9):1723–29. doi:10.1007/s00417-018-3982-0
  • Slijkerman RW, Song F, Astuti GD, Huynen MA, van Wijk E, Stieger K, Collin RW. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Prog Retin Eye Res. 2015;48:137–59. doi:10.1016/j.preteyeres.2015.04.004.