180
Views
0
CrossRef citations to date
0
Altmetric
Research Report

Whole-exome screening for primary congenital glaucoma in Lebanon

, , , , & ORCID Icon
Pages 234-245 | Received 11 Jan 2023, Accepted 04 Mar 2023, Published online: 30 Mar 2023

References

  • Sarfarazi M, Stoilov I, Schenkman JB. Genetics and biochemistry of primary congenital glaucoma. Ophthalmol Clin North Am. 2003;16(4): 543-vi. doi:10.1016/s0896-1549(03)00062-2.
  • Al-Haddad C, Abdulaal M, Badra R, Barikian A, Noureddine B, Farra C. Genotype/Phenotype correlation in primary congenital glaucoma patients in the Lebanese population: a pilot study. Ophthalmic Genet. 2016;37(1):31–36. doi:10.3109/13816810.2014.924015.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–67. doi:10.1136/bjo.2005.081224.
  • Kaur K, Mandal AK, Chakrabarti S. Primary congenital glaucoma and the involvement of CYP1B1. Middle East Afr J Ophthalmol. 2011;18(1):7–16. doi:10.4103/0974-9233.75878.
  • Geyer O, Wolf A, Levinger E, Harari-Shacham A, Walton DS, Shochat C, Korem S, Bercovich D. Genotype/Phenotype correlation in primary congenital glaucoma patients from different ethnic groups of the Israeli population. Am J Ophthalmol. 2011 Feb;151(2):263–71.e1. doi:10.1016/j.ajo.2010.08.038.
  • Mohanty K, Tanwar M, Dada R, Dada T. Screening of the LTBP2 gene in a north Indian population with primary congenital glaucoma. Mol Vis. 2013;19:78–84.
  • Tanwar M, Kumar M, Dada T, Sihota R, Dada R. MYOC and FOXC1 gene analysis in primary congenital glaucoma. Mol Vis. 2010 Oct 8;16:1996–2006. doi:10.1155/2010/212656.
  • Ali M, McKibbin M, Booth A, Parry DA, Jain P, Riazuddin SA, Hejtmancik JF, Khan SN, Firasat S, Shires M, et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 2009 May;84(5):664–71. doi:10.1016/j.ajhg.2009.03.017.
  • Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N, Yazdani S, Babrzadeh F, Suri F, Ronaghi M, et al. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet. 2009 Oct 15;18(20):3969–77. doi:10.1093/hmg/ddp338.
  • Yang Y, Zhang L, Li S, Zhu X, Sundaresan P. Candidate gene analysis identifies mutations in CYP1B1 and LTBP2 in Indian families with primary congenital glaucoma. Genet Test Mol Biomarkers. 2017 Apr;21(4):252–58. doi:10.1089/gtmb.2016.0203.
  • Lim SH, Tran-Viet KN, Yanovitch TL, Freedman SF, Klemm T, Call W, Powell C, Ravichandran A, Metlapally R, Nading EB, et al. CYP1B1, MYOC, and LTBP2 mutations in primary congenital glaucoma patients in the United States. Am J Ophthalmol. 2013 Mar;155(3):508–17.e5. doi:10.1016/j.ajo.2012.09.012.
  • Smith RS, Zabaleta A, Kume T, Savinova OV, Kidson SH, Martin JE, Nishimura DY, Alward WL, Hogan BL, John SW. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development. Hum Mol Genet. 2000 Apr 12;9(7):1021–32. doi:10.1093/hmg/9.7.1021.
  • Chakrabarti S, Kaur K, Komatireddy S, Acharya M, Devi KR, Mukhopadhyay A, Mandal AK, Hasnain SE, Chandrasekhar G, Thomas R, et al. Gln48His is the prevalent myocilin mutation in primary open angle and primary congenital glaucoma phenotypes in India. Mol Vis. 2005 Feb 4;11:111–13.
  • Medina-Trillo C, Aroca-Aguilar JD, Méndez-Hernández CD, Morales L, García-Antón M, García-Feijoo J, Escribano J. Rare FOXC1 variants in congenital glaucoma: identification of translation regulatory sequences. Eur J Hum Genet. 2016 May;24(5):672–80. doi:10.1038/ejhg.2015.169.
  • Aboobakar IF, Wiggs JL. The genetics of glaucoma: disease associations, personalised risk assessment and therapeutic opportunities-A review. Clin Exp Ophthalmol. 2022;50(2):143–62. doi:10.1111/ceo.14035.
  • Nguyen HH, Pham CM, Nguyen HTT, Vu NP, Duong TT, Nguyen TD, Nguyen BD, Nguyen HV, Nong HV. Novel mutations of the PAX6, FOXC1, and PITX2 genes cause abnormal development of the iris in Vietnamese individuals. Mol Vis. 27:555–63. 2021 Sep 2.
  • Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, Feng L, Limviphuvadh V, Whisenhunt KN, Maurer-Stroh S, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016 Jul 1;126(7):2575–87. doi:10.1172/JCI85830.
  • Young TL, Whisenhunt KN, Jin J, LaMartina SM, Martin SM, Souma T, Limviphuvadh V, Suri F, Souzeau E, Zhang X, et al. SVEP1 as a genetic modifier of TEK-related primary congenital glaucoma. Invest Ophthalmol Vis Sci. 2020 Oct 1;61(12):6. doi:10.1167/iovs.61.12.6.
  • Aghayeva FA, Schuster AK, Diel H, Chronopoulos P, Wagner FM, Grehn F, Pirlich N, Schweiger S, Pfeiffer N, Hoffmann EM. Childhood glaucoma registry in Germany: initial database, clinical care and research (pilot study). BMC Res Notes. 2022 Feb 10;15(1):32. doi:10.1186/s13104-022-05921-8.
  • Kabra M, Zhang W, Rathi S, Mandal AK, Senthil S, Pyatla G, Ramappa M, Banerjee S, Shekhar K, Marmamula S, et al. Angiopoietin receptor TEK interacts with CYP1B1 in primary congenital glaucoma. Hum Genet. 2017 Aug;136(8):941–49. doi:10.1007/s00439-017-1823-6.
  • Khan AO, Aldahmesh MA, Alkuraya FS. Congenital megalocornea with zonular weakness and childhood lens-related secondary glaucoma - a distinct phenotype caused by recessive LTBP2 mutations. Mol Vis. 2011;17:2570–79.
  • Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol. 2011;22(5):347–55. doi:10.1097/ICU.0b013e32834922d2.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi:10.1093/bioinformatics/btp324.
  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297–303. doi:10.1101/gr.107524.110.
  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012 Apr-Jun;6(2):80-92. doi:10.4161/fly.19695. PMID: 22728672; PMCID: PMC3679285.
  • 1000 Genomes Project Consortium, Auton A, Brooks LD, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, Donnelly P, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393.
  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O’donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016 Aug 18;536(7616):285–91. doi:10.1038/nature19057.
  • Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The mutational constraint spectrum quantified from variation in 141,456 humans [published correction appears in Nature. 2021 Feb;590(7846): e53] [published correction appears in Nature. 2021 Sep;597(7874): e3-E4]. Nature. 2020;581(7809):434–43. doi:10.1038/s41586-020-2308-7.
  • Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003 Jun;21(6):577–81. doi:10.1002/humu.10212.
  • Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018 Jan 4;46(D1):D1062–67. doi:10.1093/nar/gkx1153.
  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71–4. doi:10.1093/nar/gkm306.
  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010 Apr;7(4):248–49. doi:10.1038/nmeth0410-248.
  • Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001 May;11(5):863–74. doi:10.1101/gr.176601.
  • Malhis N, Jacobson M, Jones SJM, Gsponer J. LIST-S2: taxonomy based sorting of deleterious missense mutations across species. Nucleic Acids Res. 2020 Jul 2;48(W1):W154–61. doi:10.1093/nar/gkaa288.
  • Chun S, Fay JC. Identification of deleterious mutations within three human genomes. Genome Res. 2009 Sep;19(9):1553–61. doi:10.1101/gr.092619.109.
  • Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014 Apr;11(4):361–62. doi:10.1038/nmeth.2890.
  • Reva B, Antipin Y, Sander C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 2007;8(11):R232. doi:10.1186/gb-2007-8-11-r232.
  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688. doi:10.1371/journal.pone.0046688.
  • Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, Bernstein JA, Bejerano G. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet. 2016 Dec;48(12):1581–86. doi:10.1038/ng.3703.
  • Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, Gaunt TR, Campbell C. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015 May 15;31(10):1536–43. doi:10.1093/bioinformatics/btv009.
  • Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrating functional genomic annotations for coding and noncoding variants. Nat Genet. 2016 Feb;48(2):214–20. doi:10.1038/ng.3477.
  • Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009 May;37(9):e67. doi:10.1093/nar/gkp215.
  • UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 Jan 8;49(D1):D480–89. doi:10.1093/nar/gkaa1100.
  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002 Jun;12(6):996–1006. doi:10.1101/gr.229102.
  • Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021 Jan;30(1):60–69. doi:10.1002/pro.3942.
  • Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, Vertino-Bell A, Smaoui N, Neidich J, Monaghan KG, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016 Jul;18(7):696–704. 10.1038/gim.2015.148. Epub 2015 Dec 3. PMID: 26633542.
  • Khalil A, Al-Haddad C, Hariri H, Shibbani K, Bitar F, Kurban M, Nemer G, Arabi M. A novel mutation in FOXC1 in a Lebanese family with congenital heart disease and anterior segment dysgenesis: potential roles for NFATC1 and DPT in the phenotypic variations. Front Cardiovasc Med. 2017 Sep 20;4:58. 10.3389/fcvm.2017.00058
  • Michels-Rautenstrauss KG, Mardin CY, Zenker M, Jordan N, Gusek-Schneider GC, Rautenstrauss BW. Primary congenital glaucoma: three case reports on novel mutations and combinations of mutations in the GLC3A (CYP1B1) gene. J Glaucoma. 2001 Aug;10(4):354–57. doi:10.1097/00061198-200108000-00017.
  • Bejjani BA, Stockton DW, Lewis RA, Tomey KF, Dueker DK, Jabak M, Astle WF, Lupski JR. Multiple CYP1B1 mutations and incomplete penetrance in an inbred population segregating primary congenital glaucoma suggest frequent de novo events and a dominant modifier locus. Hum Mol Genet. 2000 Feb 12;9(3):367–74. doi:10.1093/hmg/9.3.367.
  • El-Ashry MF, Abd El-Aziz MM, Bhattacharya SS. A clinical and molecular genetic study of Egyptian and Saudi Arabian patients with primary congenital glaucoma (PCG). J Glaucoma. 2007 Jan;16(1):104–11. doi:10.1097/01.ijg.0000212288.00917.e1.
  • Abu-Amero KK, Osman EA, Mousa A, Wheeler J, Whigham B, Allingham RR, Hauser MA, Al-Obeidan SA. Screening of CYP1B1 and LTBP2 genes in Saudi families with primary congenital glaucoma: genotype-phenotype correlation. Mol Vis. 2011;17:2911–19.
  • Khan AO, Aldahmesh MA, Al-Abdi L, Mohamed JY, Hashem M, Al-Ghamdi I, Alkuraya FS. Molecular characterization of newborn glaucoma including a distinct aniridic phenotype. Ophthalmic Genet. 2011 Sep;32(3):138–42. doi:10.3109/13816810.2010.544365.
  • Badeeb OM, Micheal S, Koenekoop RK, den Hollander AI, Hedrawi MT. CYP1B1 mutations in patients with primary congenital glaucoma from Saudi Arabia. BMC Med Genet. 2014 Sep 28;15(1):109. doi:10.1186/s12881-014-0109-2.
  • Alfadhli S, Behbehani A, Elshafey A, Abdelmoaty S, Al-Awadi S. Molecular and clinical evaluation of primary congenital glaucoma in Kuwait. Am J Ophthalmol. 2006 Mar;141(3):512–16. doi:10.1016/j.ajo.2005.11.001.
  • Chitsazian F, Tusi BK, Elahi E, Saroei HA, Sanati MH, Yazdani S, Pakravan M, Nilforooshan N, Eslami Y, Mehrjerdi MA, et al. CYP1B1 mutation profile of Iranian primary congenital glaucoma patients and associated haplotypes. J Mol Diagn. 2007 Jul;9(3):382–93. doi:10.2353/jmoldx.2007.060157.
  • Elahi E, Narooie-Nejhad M, Suri F, Yazdani S. Myocilin mutations are not a major cause of primary congenital glaucoma in Iranian patients. J Ophthalmic Vis Res. 2010 Apr;5(2):101–04.
  • Arab F, Yousefabadi ER, Daneshvar R, Karimiani EG. Three novel CYP1B1 mutations (p.L480p, p.S476p, p.R175p) in primary congenital glaucoma cases residing in Eastern Iran. J Clin Med Genomics. 2019;7:157.
  • Ava S, Demirtaş AA, Karahan M, Erdem S, Oral D, Keklikçi U. Genetic analysis of patients with primary congenital glaucoma. Int Ophthalmol. 2021 Jul;41(7):2565–74. doi:10.1007/s10792-021-01815-z.
  • Bouyacoub Y, Ben Yahia S, Abroug N, Kahloun R, Kefi R, Khairallah M, Abdelhak S. CYP1B1 gene mutations causing primary congenital glaucoma in Tunisia. Ann Hum Genet. 2014 Jul;78(4):255–63. doi:10.1111/ahg.12069.
  • Khafagy MM, El-Guendy N, Tantawy MA, Eldaly MA, Elhilali HM, Abdel Wahab AHA. Novel CYP1B1 mutations and a possible prognostic use for surgical management of congenital glaucoma. Int J Ophthalmol. 2019 Apr 18;12(4):607–14. doi:10.18240/ijo.2019.04.14.
  • Bar-Yosef U, Levy J, Elbedour K, Ofir R, Carmi R, Birk OS. Congenital glaucoma: cYP1B1 mutations in Israeli Bedouin kindreds. J Glaucoma. 2010 Jan;19(1):35–38. doi:10.1097/IJG.0b013e3181a98b6f.
  • Hoff KJ. The effect of sequencing errors on metagenomic gene prediction. BMC Genomics. 2009 Nov 12;10(1):520. doi:10.1186/1471-2164-10-520.
  • Morlino S, Alesi V, Calì F, Lepri FR, Secinaro A, Grammatico P, Novelli A, Drago F, Castori M, Baban A. LTBP2-related “Marfan-like” phenotype in two Roma/Gypsy subjects with the LTBP2 homozygous p.R299x variant. Am J Med Genet A. 2019 Jan;179(1):104–12. doi:10.1002/ajmg.a.10.
  • Challa P, Hauser MA, Luna CC, Freedman SF, Pericak-Vance M, Yang J, McDonald MT, Allingham RR. Juvenile bilateral lens dislocation and glaucoma associated with a novel mutation in the fibrillin 1 gene. Mol Vis. 12:1009–15. 2006 Aug 28.
  • Hernández-Martínez N, González-Del Angel A, Alcántara-Ortigoza MA, González-Huerta LM, Cuevas-Covarrubias SA, Villanueva-Mendoza C. Molecular characterization of Axenfeld-Rieger spectrum and other anterior segment dysgeneses in a sample of Mexican patients. Ophthalmic Genet. 2018 Dec;39(6):728–34. doi:10.1080/13816810.2018.1547911.
  • Carstens N, Goolam S, Hulley M, Brandenburg JT, Ramsay M, Williams SEI. Exome-based mutation screening in South African children with primary congenital glaucoma. Eye (Lond). 2022 Jan 29;37(2):362–68. doi:10.1038/s41433-022-01941-7.
  • Qiao Y, Chen Y, Tan C, Sun X, Chen X, Chen J. Screening and functional analysis of TEK mutations in Chinese children with primary congenital glaucoma. Front Genet. 2021 Dec 10;12:764509. 10.3389/fgene.2021.764509
  • Li Y, Zhang J, Dai Y, Fan Y, Xu J. Novel mutations in COL6A3 that associated with peters’ anomaly caused abnormal intracellular protein retention and decreased cellular resistance to oxidative stress. Front Cell Dev Biol. 2020 Nov 10;8:531986. 10.3389/fcell.2020.531986
  • Choquet H, Thai KK, Yin J, Hoffmann TJ, Kvale MN, Banda Y, Schaefer C, Risch N, Nair KS, Melles R, et al. A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure. Nat Commun. 2017 Dec 13;8(1):2108. doi:10.1038/s41467-017-01913-6.
  • Wirtz MK, Sykes R, Samples J, Edmunds B, Choi D, Keene DR, Tufa SF, Sun YY, Keller KE. Identification of missense extracellular matrix gene variants in a large glaucoma pedigree and investigation of the N700S Thrombospondin-1 variant in normal and glaucomatous trabecular meshwork cells. Curr Eye Res. 2022 Jan;47(1):79–90. doi:10.1080/02713683.2021.1945109.
  • Mauri L, Uebe S, Sticht H, Vossmerbaeumer U, Weisschuh N, Manfredini E, Maselli E, Patrosso M, Weinreb RN, Penco S, et al. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet J Rare Dis. 2016 Aug 2;11(1):108. doi:10.1186/s13023-016-0495-y.
  • Su HA, Li SY, Yang JJ, Yen YC. An application of NGS for WDR36 gene in Taiwanese patients with Juvenile-onset open-angle glaucoma. Int J Med Sci. 2017 Sep 20;14(12):1251–56. doi:10.7150/ijms.20729.
  • Ma AS, Grigg JR, Ho G, Prokudin I, Farnsworth E, Holman K, Cheng A, Billson FA, Martin F, Fraser C, et al. Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat. 2016 Apr;37(4):371–84. doi:10.1002/humu.22948.
  • Medina-Trillo C, Aroca-Aguilar JD, Ferre-Fernández JJ, Alexandre-Moreno S, Morales L, Méndez-Hernández CD, García-Feijoo J, Escribano J. Role of FOXC2 and PITX2 rare variants associated with mild functional alterations as modifier factors in congenital glaucoma. PLoS One. 2019 Jan 18;14(1):e0211029. doi:10.1371/journal.pone.0211029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.