Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 22, 2015 - Issue 2
179
Views
5
CrossRef citations to date
0
Altmetric
Articles

Adult age differences in subjective and objective measures of strategy use on a sequentially cued prediction task

, &
Pages 170-182 | Received 09 Sep 2013, Accepted 24 Feb 2014, Published online: 27 Mar 2014

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. doi:10.1109/TAC.1974.1100705
  • Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Thousand Oaks, CA: SAGE.
  • Chowdhury, R., Guitart-Masip, M., Lambert, C., Dolan, R. J., & Düzel, E. (2013). Structural integrity of the substantia nigra and subthalamic nucleus predicts flexibility of instrumental learning in older-age individuals. Neurobiology of Aging, 34, 2261–2270. doi:10.1016/j.neurobiolaging.2013.03.030
  • Curran, T. (1997). Effects of aging on implicit sequence learning: Accounting for sequence structure and explicit knowledge. Psychological Research, 60, 24–41. doi:10.1007/BF00419678
  • Denburg, N. L., Tranel, D., & Bechara, A. (2005). The ability to decide advantageously declines prematurely in some normal older persons. Neuropsychologia, 43, 1099–1106. doi:10.1016/j.neuropsychologia.2004.09.012
  • Dennis, N. A., Howard, J. H., & Howard, D. V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175, 153–164. doi:10.1007/s00221-006-0534-3
  • DiCiccio, T. J., & Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11, 189–228. doi:10.1214/ss/1032280214
  • Eppinger, B., & Kray, J. (2011). To choose or to avoid: Age differences in learning from positive and negative feedback. Journal of Cognitive Neuroscience, 23, 41–52. doi:10.1162/jocn.2009.21364
  • Eppinger, B., Schuck, N. W., Nystrom, L. E., & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. The Journal of Neuroscience, 33, 9905–9912. doi:10.1523/JNEUROSCI.2942-12.2013
  • Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., … Mattay, V. S. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. The Journal of Neuroscience, 25, 11340–11348. doi:10.1523/JNEUROSCI.2736-05.2005
  • Filoteo, J. V., & Maddox, W. T. (2004). A quantitative model-based approach to examining aging effects on information-integration category learning. Psychology and Aging, 19, 171–182. doi:10.1037/0882-7974.19.1.171
  • Glass, B. D., Chotibut, T., Pacheco, J., Schnyer, D. M., & Maddox, W. T. (2012). Normal aging and the dissociable prototype learning systems. Psychology and Aging, 27, 120–128. doi:10.1037/a0024971
  • Gluck, M. A., Shohamy, D., & Myers, C. E. (2002). How do people solve the “weather prediction” task?: Individual variability in strategies for probabilistic category learning. Learning & Memory, 9, 408–418. doi:10.1101/lm.45202
  • Gorlick, M. A., & Maddox, W. T. (2013). Priming for performance: Valence of emotional primes interact with dissociable prototype learning systems. PloS One, 8, e60748. doi:10.1371/journal.pone.0060748
  • Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Press.
  • Hosseini, S. M. H., Rostami, M., Yomogida, Y., Takahashi, M., Tsukiura, T., & Kawashima, R. (2010). Aging and decision making under uncertainty: Behavioral and neural evidence for the preservation of decision making in the absence of learning in old age. NeuroImage, 52, 1514–1520. doi:10.1016/j.neuroimage.2010.05.008
  • Howard, D. V., Howard, J. H., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004). Implicit sequence learning: Effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92. doi:10.1037/0882-7974.19.1.79
  • Howard, J. H., & Howard, D. V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12, 634–656. doi:10.1037/0882-7974.12.4.634
  • Howard, J. H., Howard, D. V., Dennis, N. A., & Kelly, A. J. (2008). Implicit learning of predictive relationships in three-element visual sequences by young and old adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1139–1157. doi:10.1037/a0012797
  • Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning & Memory, 1, 106–120. doi:10.1101/lm.1.2.106
  • Lemaire, P. (2010). Cognitive strategy variations during aging. Current Directions in Psychological Science, 19, 363–369. doi:10.1177/0963721410390354
  • Maddox, W. T., Pacheco, J., Reeves, M., Zhu, B., & Schnyer, D. M. (2010). Rule-based and information-integration category learning in normal aging. Neuropsychologia, 48, 2998–3008. doi:10.1016/j.neuropsychologia.2010.06.008
  • Mata, R., Josef, A. K., Samanez-Larkin, G. R., & Hertwig, R. (2011). Age differences in risky choice: A meta-analysis. Annals of the New York Academy of Sciences, 1235, 18–29. doi:10.1111/j.1749-6632.2011.06200.x
  • Mata, R., Schooler, L. J., & Rieskamp, J. (2007). The aging decision maker: Cognitive aging and the adaptive selection of decision strategies. Psychology and Aging, 22, 796–810. doi:10.1037/0882-7974.22.4.796
  • Mata, R., von Helversen, B., & Rieskamp, J. (2010). Learning to choose: Cognitive aging and strategy selection learning in decision making. Psychology and Aging, 25, 299–309. doi:10.1037/a0018923
  • Mata, R., Wilke, A., & Czienskowski, U. (2009). Cognitive aging and adaptive foraging behavior. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 64B, 474–481. doi:10.1093/geronb/gbp035
  • Mell, T., Heekeren, H. R., Marschner, A., Wartenburger, I., Villringer, A., & Reischies, F. M. (2005). Effect of aging on stimulus-reward association learning. Neuropsychologia, 43, 554–563. doi:10.1016/j.neuropsychologia.2004.07.010
  • Mell, T., Wartenburger, I., Marschner, A., Villringer, A., Reischies, F. M., & Heekeren, H. R. (2009). Altered function of ventral striatum during reward-based decision making in old age. Frontiers in Human Neuroscience, 3, 1–10. doi:10.3389/neuro.09.034.2009
  • Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717–731. doi:10.3758/BF03206553
  • Preacher, K. J., & Kelley, K. (2011). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16, 93–115. doi:10.1037/a0022658
  • Price, A. L. (2005). Cortico-striatal contributions to category learning: Dissociating the verbal and implicit systems. Behavioral Neuroscience, 119, 1438–1447. doi:10.1037/0735-7044.119.6.1438
  • Price, A. L. (2009). Distinguishing the contributions of implicit and explicit processes to performance of the weather prediction task. Memory & Cognition, 37, 210–222. doi:10.3758/MC.37.2.210
  • Rieckmann, A., & Bäckman, L. (2009). Implicit learning in aging: Extant patterns and new directions. Neuropsychology Review, 19, 490–503. doi:10.1007/s11065-009-9117-y
  • Rieckmann, A., Fischer, H., & Bäckman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: Relations to performance. NeuroImage, 50, 1303–1312. doi:10.1016/j.neuroimage.2010.01.015
  • Samanez-Larkin, G. R., Hollon, N. G., Carstensen, L. L., & Knutson, B. (2008). Individual differences in insular sensitivity during loss anticipation predict avoidance learning. Psychological Science, 19, 320–323. doi:10.1111/j.1467-9280.2008.02087.x
  • Samanez-Larkin, G. R., Levens, S. M., Perry, L. M., Dougherty, R. F., & Knutson, B. (2012). Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. The Journal of Neuroscience, 32, 5333–5337. doi:10.1523/JNEUROSCI.5756-11.2012
  • Samanez-Larkin, G. R., Wagner, A. D., & Knutson, B. (2011). Expected value information improves financial risk taking across the adult life span. Social Cognitive and Affective Neuroscience, 6, 207–217. doi:10.1093/scan/nsq043
  • Schott, B. H., Niehaus, L., Wittmann, B. C., Schutze, H., Seidenbecher, C. I., Heinze, H.-J., & Duzel, E. (2007). Ageing and early-stage Parkinson’s disease affect separable neural mechanisms of mesolimbic reward processing. Brain, 130, 2412–2424. doi:10.1093/brain/awm147
  • Schuck, N. W., Frensch, P. A., Schjeide, B.-M. M., Schröder, J., Bertram, L., & Li, S.-C. (2013). Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia, 51, 2757–2769. doi:10.1016/j.neuropsychologia.2013.09.009
  • Seaman, K. L., Howard, D. V., & Howard, J. H. J. (2013). Adult age differences in learning on a sequentially cued prediction task. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. doi:10.1093/geronb/gbt057
  • Shohamy, D., Myers, C. E., Onlaor, S., & Gluck, M. A. (2004). Role of the basal ganglia in category learning: How do patients with Parkinson’s disease learn? Behavioral Neuroscience, 118, 676–686. doi:10.1037/0735-7044.118.4.676
  • Simon, J. R., Stollstorff, M., Westbay, L. C., Vaidya, C. J., Howard, J. H., & Howard, D. V. (2011). Dopamine transporter genotype predicts implicit sequence learning. Behavioural Brain Research, 216, 452–457. doi:10.1016/j.bbr.2010.08.043
  • Simon, J. R., Vaidya, C. J., Howard, J. H., & Howard, D. V. (2012). The effects of aging on the neural basis of implicit associative learning in a probabilistic triplets learning task. Journal of Cognitive Neuroscience, 24, 451–463. doi:10.1162/jocn_a_00116
  • Uttl, B. (2002). North American adult reading test: Age norms, reliability, and validity. Journal of Clinical and Experimental Neuropsychology (Neuropsychology, Development and Cognition: Section A), 24, 1123–1137. doi:10.1076/jcen.24.8.1123.8375
  • Wagenmakers, E., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192–196. doi:10.3758/BF03206482
  • Wechsler, D. (1997a). Wechsler adult intelligence scale (3rd ed.). San Antonio, TX: The Psychological Corporation.
  • Wechsler, D. (1997b). Wechsler memory scale (3rd ed.). San Antonio, TX: The Psychological Corporation.
  • Weiler, J. A., Bellebaum, C., & Daum, I. (2008). Aging affects acquisition and reversal of reward-based associative learning. Learning & Memory, 15, 190–197. doi:10.1101/lm.890408
  • Worthy, D. A., Gorlick, M. A., Pacheco, J. L., Schnyer, D. M., & Maddox, W. T. (2011). With age comes wisdom: Decision making in younger and older adults. Psychological Science, 22, 1375–1380. doi:10.1177/0956797611420301
  • Worthy, D. A., & Maddox, W. T. (2012). Age-based differences in strategy use in choice tasks. Frontiers in Neuroscience, 5, 1–10. doi:10.3389/fnins.2011.00145

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.