Publication Cover
Aging, Neuropsychology, and Cognition
A Journal on Normal and Dysfunctional Development
Volume 29, 2022 - Issue 6
1,402
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Age-related differences in cerebrovascular responses to cognitive stimulation using a novel method

, , , , , , , , & show all
Pages 929-942 | Received 09 Mar 2021, Accepted 20 May 2021, Published online: 07 Jun 2021

References

  • Beishon, L., Minhas, J. S., Patrick, K., Shanmugam, I., Williams, C. A. L., Panerai, R. B., … Haunton, V. J. (2018). The effects of healthy ageing on cerebral blood flow responses to cognitive testing. Current Aging Science, 11(4), 226–235. https://doi.org/10.2174/1874609812666190131165310
  • Beishon, L. C., Williams, C. A., Intharakham, K., Batterham, A. P., Barnes, S. C., Haunton, V. J. & Panerai, R. B. (2020). An objective method to identify non-responders in neurovascular coupling testing. J Neurosci Methods, 341, 108779. doi: 10.1016/j.jneumeth.2020.108779
  • Beishon, L. C., Williams, C. A. L., Panerai, R. B., Robinson, T. G., & Haunton, V. J. (2017). The assessment of neurovascular coupling with the addenbrooke’s cognitive examination: A functional Transcranial Doppler Ultrasonographic Study. J Neurophysiol. 2018 Mar 1;119(3):1084-1094. https://doi.org/10.1152/jn.00698.2017
  • Berlingeri, M., Danelli, L., Bottini, G., Sberna, M., & Paulesu, E. (2013). Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 224(3), 393–410. https://doi.org/10.1007/s00221-012-3319-x
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85–100. https://doi.org/10.1037/0882-7974.17.1.85
  • Cabeza, R., Albert, M., Belleville, S., Craik, F. I. M., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701–710. https://doi.org/10.1038/s41583-018-0068-2
  • Csipo, T., Mukli, P., Lipecz, A., Tarantini, S., Bahadli, D., Abdulhussein, O., Owens, C., Kiss, T., Balasubramanian, P., Nyúl-Tóth, Á., Hand, R. A., Yabluchanska, V., Sorond, F. A., Csiszar, A., Ungvari, Z., & Yabluchanskiy, A. (2019). Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. Geroscience, 41(5), 495–509. https://doi.org/10.1007/s11357-019-00122-x
  • Fabiani, M., Gordon, B. A., Maclin, E. L., Pearson, M. A., Brumback-Peltz, C. R., Low, K. A., McAuley, E., Sutton, B. P., Kramer, A. F., & Gratton, G. (2014). Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study. Neuroimage, 85, 592–607. https://doi.org/10.1016/j.neuroimage.2013.04.113
  • Flück, D., Beaudin, A., Steinback, C., Kumarpillai, G., Shobha, N., McCreary, C., Peca, S., Smith, E. E., & Poulin, M. (2014). Effects of aging on the association between cerebrovascular responses to visual stimulation, hypercapnia and arterial stiffness. Front Physiol. 2014 Feb 19;5:49. https://doi.org/10.3389/fphys.2014.00049
  • Grinband, J., Steffener, J., Razlighi, Q. R., & Stern, Y. (2017). BOLD neurovascular coupling does not change significantly with normal aging. Human Brain mapping, 38(7), 3538–3551. https://doi.org/10.1002/hbm.23608
  • Hosford, P. S., & Gourine, A. V. (2019). What is the key mediator of the neurovascular coupling response? Neurosci Biobehav Rev. 2019 Jan; 96:174-181. https://doi.org/10.1016/j.neubiorev.2018.11.011
  • Iadecola, C. (2017). The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron, 96(1), 17–42. https://doi.org/10.1016/j.neuron.2017.07.030
  • Jamadar, S. D. (2020). The CRUNCH model does not account for load-dependent changes in visuospatial working memory in older adults. Neuropsychologia, 2020 May;142:107446. https://doi.org/10.1016/j.neuropsychologia.2020.107446
  • Lipecz, A., Csipo, T., Tarantini, S., Hand, R. A., Ngo, B. T. N., Conley, S., Nemeth, G., Tsorbatzoglou, A., Courtney, D. L., Yabluchanska, V., Csiszar, A., Ungvari, Z. I., & Yabluchanskiy, A. (2019). Age-related impairment of neurovascular coupling responses: A dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience, 41(3), 341–349. https://doi.org/10.1007/s11357-019-00078-y
  • Madureira, J., Castro, P., & Azevedo, E. (2017). Demographic and systemic hemodynamic influences in mechanisms of cerebrovascular regulation in healthy adults. Journal of Stroke and Cerebrovascular Diseases, 26(3), 500–508. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.003
  • McCarthy, P., Benuskova, L., & Franz, E. A. (2014). The age-related posterior-anterior shift as revealed by voxelwise analysis of functional brain networks. Neurosci. 2014 Nov 7;6:301. https://doi.org/10.3389/fnagi.2014.00301
  • Merlo, S., Spampinato, S. F., & Sortino, M. A. (2019). Early compensatory responses against neuronal injury: A new therapeutic window of opportunity for alzheimer’s disease? CNS Neuroscience & Therapeutics, 25(1), 5–13. https://doi.org/10.1111/cns.13050
  • Morcom, A. M., & Henson, R. N. A. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. The Journal of Neuroscience, 38(33), 7303–7313. https://doi.org/10.1523/jneurosci.1701-17.2018
  • Murman, D. L. (2015). The impact of age on cognition. Seminars in Hearing, 36(3), 111–121. https://doi.org/10.1055/s-0035-1555115
  • Myrum, C. (2019). Is PASA passé?: Rethinking compensatory mechanisms in cognitive aging. The Journal of Neuroscience, 39(5), 786–787. https://doi.org/10.1523/jneurosci.2348-18.2018
  • Nowak-Flück, D., Ainslie, P. N., Bain, A. R., Ahmed, A., Wildfong, K. W., Morris, L. E., Phillips, A. A., & Fisher, J. P. (2018). Effect of healthy aging on cerebral blood flow, CO2 reactivity, and neurovascular coupling during exercise. Journal of Applied Physiology, 125(6), 1917–1930. https://doi.org/10.1152/japplphysiol.00050.2018
  • World Health Organisation. (2018). Ageing and health. World Health Organisation, Geneva, Switzerland. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
  • Orlandi, G., & Murri, L. (1996). Transcranial doppler assessment of cerebral flow velocity at rest and during voluntary movements in young and elderly healthy subjects. International Journal of Neuroscience, 84(1–4), 45–53. https://doi.org/10.3109/00207459608987249
  • Patel, N., Panerai, R. B., Haunton, V., Katsogridakis, E., Saeed, N. P., Salinet, A., Brodie, F., Syed, N., D’Sa, S., & Robinson, T. G. (2016). The leicester cerebral haemodynamics database: Normative values and the influence of age and sex. Physiological Measurement, 37(9), 1485–1498. https://doi.org/10.1088/0967-3334/37/9/1485
  • Prince, M., Wimo, A., Guerchet, M., Ali, G. C., Wu, Y., & Prina, M. (2015). World alzheimer report 2015 the global impact of dementia alzheimer’s disease international. Alzheimer's Disease Internationa.
  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182. https://doi.org/10.1111/j.1467-8721.2008.00570.x
  • Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355–370. https://doi.org/10.1007/s11065-014-9270-9
  • Sorond, F. A., Schnyer, D. M., Serrador, J. M., Milberg, W. P., & Lipsitz, L. A. (2008). Cerebral blood flow regulation during cognitive tasks: Effects of healthy aging. Cortex, 44(2), 179–184. https://doi.org/10.1016/j.cortex.2006.01.003
  • Stefanidis, K. B., Askew, C. D., Klein, T., Lagopoulos, J., Summers, M. J., & Mogi, M. (2019). Healthy aging affects cerebrovascular reactivity and pressure-flow responses, but not neurovascular coupling: A cross-sectional study. PLOS ONE, 14(5), e0217082. https://doi.org/10.1371/journal.pone.0217082
  • Vermeij, A., Meel-van Den Abeelen, A. S. S., Kessels, R. P. C., Van Beek, A. H. E. A., & Claassen, J. A. H. R. (2014). Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Neuroimage. 2014 Jan 15;85 Pt 1:608-615. https://doi.org/10.1016/j.neuroimage.2013.04.107
  • West, K. L., Zuppichini, M. D., Turner, M. P., Sivakolundu, D. K., Zhao, Y., Abdelkarim, D., Spence, J. S., & Rypma, B. (2019). BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage. 2019 Mar;188:198-207. https://doi.org/10.1016/j.neuroimage.2018.12.012
  • Williams, C. A. L., Panerai, R. B., Robinson, T. G., & Haunton, V. J. (2017). Transcranial Doppler ultrasonography in the assessment of neurovascular coupling responses to cognitive examination in healthy controls: A feasibility study. J Neurosci Methods. 2017 Jun 1;284:57-62. https://doi.org/10.1016/j.jneumeth.2017.04.013
  • Zaletel, M., Strucl, M., Pretnar-Oblak, J., & Zvan, B. (2005). Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Functional Neurology, 20(3), 115–120. DOI: 10.1016/j.neuroimage.2004.04.019.