272
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Relationship between cognitive reserve, brain volume, and neuropsychological performance in amnestic and nonamnestic MCI

, , , , , , & show all
Pages 940-956 | Received 20 Apr 2022, Accepted 16 Dec 2022, Published online: 26 Dec 2022

References

  • Adams, H. H., de Bruijn, R. F., Hofman, A., Uitterlinden, A. G., van Duijn, C. M., Vernooij, M. W., Ikram, M. A. (2015). Genetic risk of neurodegenerative diseases is associated with mild cognitive impairment and conversion to dementia. Alzheimer’s & Dementia, 11(11), 1277–1285. https://doi.org/10.1016/j.jalz.2014.12.008
  • Andrejeva, N., Knebel, M., Dos Santos, V., Schmidt, J., Herold, C. J., Tudoran, R., Wetzel, P., Wendelstein, B., Meyer-Kühling, I., Navratil, S. D., Gorenc-Mahmutaj, L., Rosenbaum, G., Pantel, J., Schroder, J. (2016). Neurocognitive Deficits and Effects of Cognitive Reserve in Mild Cognitive Impairment. Dementia and geriatric cognitive disorders, 41(3–4), 199–209. https://doi.org/10.1159/000443791
  • Bartrés-Faz, D., Solé-Padullés, C., Junqué, C., Rami, L., Bosch, B., Bargalló, N., Molinuevo, J. L. (2009). Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biological Psychology, 80(2), 256–259. https://doi.org/10.1016/j.biopsycho.2008.10.005
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R.,D. A. Nation, D. J. Libon, Au R., Galasko, D., D. P. Salmon. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1), 275–289. https://doi.org/10.3233/JAD-140276
  • Bordignon, A., Devita, M., Sergi, G., & Coin, A. (2021). “Cerebellar cognitive reserve”: A possible further area of investigation. Aging Clinical and Experimental Research, 33(10), 2883–2886. https://doi.org/10.1007/s40520-021-01795-1
  • Bosch, B., Bartres-Faz, D., Rami, L., Arenaza-Urquijo, E. M., Fernandez-Espejo, D., Junque, C., Solé-Padullés C, Sanchez-Valle R., Bargallo N., Falcon C, J. L. Molinuevo. (2010). Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer’s disease. Cortex, 46(4), 451–461. https://doi.org/10.1016/j.cortex.2009.05.006
  • Brandt, J., & Benedict, R. H. (2001). Hopkins verbal learning test–revised: Professional manual. Psychological Assessment Resources.
  • Cai, S., Huang, L., Zou, J., Jing, L., Zhai, B., Ji, G., K. M. von Deneen, Ren J., Ren A. (2015). Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: A resting-state functional magnetic resonance study from ADNI. PLoS One, 10(2), e0115573. https://doi.org/10.1371/journal.pone.0115573
  • Carlson, M. C., Xue, Q. -L., Zhou, J., & Fried, L. P. (2009). Executive decline and dysfunction precedes declines in memory: The women’s health and aging study II. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 64(1), 110–117. https://doi.org/10.1093/gerona/gln008
  • Csukly, G., Sirály, E., Fodor, Z., Horváth, A., Salacz, P., Hidasi, Z., Csibri É., Rudas G., Szabó Á. (2016). The differentiation of amnestic type MCI from the non-amnestic types by structural MRI. Frontiers in aging neuroscience, 8, 52. https://doi.org/10.3389/fnagi.2016.00052
  • Delano-Wood, L., Abeles, N., Sacco, J. M., Wierenga, C. E., Horne, N. R., & Bozoki, A. (2008). Regional white matter pathology in mild cognitive impairment: Differential influence of lesion type on neuropsychological functioning. Stroke, 39(3), 794–799. https://doi.org/10.1161/STROKEAHA.107.502534
  • Delano-Wood, L., Bondi, M. W., Sacco, J., Abeles, N., Jak, A. J., Libon, D. J., & Bozoki, A. (2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15(6), 906–914. https://doi.org/10.1017/S1355617709990257
  • Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system: Examiners manual. Psychological Corporation.
  • Duncan, H. D., Nikelski, J., Pilon, R., Steffener, J., Chertkow, H., & Phillips, N. A. (2018). Structural brain differences between monolingual and multilingual patients with mild cognitive impairment and Alzheimer disease: Evidence for cognitive reserve. Neuropsychologia, 109, 270–282. https://doi.org/10.1016/j.neuropsychologia.2017.12.036
  • Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., & Weiner, M. W. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 71(4), 441–447. https://doi.org/10.1136/jnnp.71.4.441
  • Espinosa, A., Alegret, M., Valero, S., Vinyes-Junqué, G., Hernández, I., Mauleón, A., Rosende-Roca M., Ruiz A, López O., Tárraga L., Boada M. (2013). A longitudinal follow-up of 550 mild cognitive impairment patients: Evidence for large conversion to dementia rates and detection of major risk factors involved. Journal of Alzheimer’s Disease, 34(3), 769–780. https://doi.org/10.3233/JAD-122002
  • Ferman, T. J., Smith, G. E., Kantarci, K., Boeve, B. F., Pankratz, V. S., Dickson, D. W., N.R. Graff-Radford, Wszolek Z., Van Gerpen J., Uitti R., Pedraza O. (2013). Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology, 81(23), 2032–2038. https://doi.org/10.1212/01.wnl.0000436942.55281.47
  • Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J. F. (2012). Education, occupation, leisure activities, and brain reserve: A population-based study. Neurobiology of Aging, 33(2), 423 e415–425. https://doi.org/10.1016/j.neurobiolaging.2010.09.023
  • Franzmeier, N., Buerger, K., Teipel, S., Stern, Y., Dichgans, M., & Ewers, M. (2017). Alzheimer’s disease neuroimaging Initiative (ADNI. Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiology of Aging, 50, 152–162. https://doi.org/10.1016/j.neurobiolaging.2016.11.013
  • Frisoni, G. B., Testa, C., Zorzan, A., Sabattoli, F., Beltramello, A., Soininen, H., & Laakso, M. P. (2002). Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. Journal of Neurology, Neurosurgery, and Psychiatry, 73(6), 657–664. https://doi.org/10.1136/jnnp.73.6.657
  • Garibotto, V., Borroni, B., Kalbe, E., Herholz, K., Salmon, E., Holtoff, V., Sorbi S., S. F. Cappa, Padovani A, Fazio F., Perani D. (2008). Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology, 71(17), 1342–1349. https://doi.org/10.1212/01.wnl.0000327670.62378.c0
  • Garrett, K. D., Browndyke, J. N., Whelihan, W., Paul, R. H., DiCarlo, M., Moser, D. J., Cohen, R. A., Ott, B. R. (2004). The neuropsychological profile of vascular cognitive impairment—no dementia: Comparisons to patients at risk for cerebrovascular disease and vascular dementia. Archives of Clinical Neuropsychology, 19(6), 745–757. https://doi.org/10.1016/j.acn.2003.09.008
  • Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., Belleville, S., Brodaty, H., Bennett, D., Chertkow, H., Cummings, J. L., de Leon, M., Feldman, H., Manguli, M., Hampel, H., Scheltens, P., Tierney, M. C., Whitehouse, P., Winblad, B. (2006). Mild cognitive impairment. The Lancet, 367(9518), 1262–1270. https://doi.org/10.1016/s0140-6736(06)68542-5
  • Grau-Olivares, M., Arboix, A., Junqué, C., Arenaza-Urquijo, E. M., Rovira, M., & Bartrés-Faz, D. (2010). Progressive gray matter atrophy in lacunar patients with vascular mild cognitive impairment. Cerebrovascular Diseases, 30(2), 157–166. https://doi.org/10.1159/000316059
  • Gu, L., Chen, J., Gao, L., Shu, H., Wang, Z., Liu, D., Yan, Y., Li, S., Zhang, Z. (2018). Cognitive reserve modulates attention processes in healthy elderly and amnestic mild cognitive impairment: An event-related potential study. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 129(1), 198–207. https://doi.org/10.1016/j.clinph.2017.10.030
  • Harris, P., Suarez, M. F., Surace, E. I., Méndez, P. C., Martín, M. E., Clarens, M. F., Tapajóz, F., Russo, M. J., Campos, J., Guinjoan, S. M., Sevlever, G., Allegri, R. F. (2015). Cognitive reserve and Aβ1-42 in mild cognitive impairment (Argentina-Alzheimer’s disease neuroimaging initiative). Neuropsychiatric Disease and Treatment, 11, 2599. https://doi.org/10.2147/NDT.S84292
  • Heaton, R. K. (1981). Wisconsin card sorting test manual. Psychological Assessment Resources.
  • He, J., Farias, S., Martinez, O., Reed, B., Mungas, D., & DeCarli, C. (2009). Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Archives of Neurology, 66(11), 1393–1399. https://doi.org/10.1001/archneurol.2009.252
  • Jack, C., Weigand, S. D., Shiung, M. M., Przybelski, S. A., O’Brien, P. C., Gunter, J. L., Knopman, D. S., Boeve, B. F., Smith, G. E., Petersen, R. C. (2008). Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology, 70(19 Part 2), 1740–1752. https://doi.org/10.1212/01.wnl.0000281688.77598.35
  • Junquera, A., García-Zamora, E., Olazarán, J., Parra, M. A., & Fernández-Guinea, S. (2020). Role of executive functions in the conversion from mild cognitive impairment to dementia. Journal of Alzheimer’s Disease, 77(2), 641–653. https://doi.org/10.3233/JAD-200586
  • Kaplan, E., Goodglass, H., & Weintraub, S. (2001). Boston Naming (Test—2nd ed.). Pro-Ed: Inc.
  • Kemppainen, N. M., Aalto, S., Karrasch, M., Någren, K., Savisto, N., Oikonen, V., Viitanen, M., Parkkola, R., Rinne, J. O. (2008). Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Annals of Neurology, 63(1), 112–118. https://doi.org/10.1002/ana.21212
  • Lei, Y., Su, J., Guo, Q., Yang, H., Gu, Y., & Mao, Y. (2016). Regional gray matter atrophy in vascular mild cognitive impairment. Journal of Stroke and Cerebrovascular Diseases, 25(1), 95–101. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.041
  • Litvan, I., Aarsland, D., Adler, C. H., Goldman, J. G., Kulisevsky, J., Mollenhauer, B., Rodriguez-Oroz, M. C., Tröster, A. I., Weintraub, D. (2011). MDS task force on mild cognitive impairment in Parkinson’s disease: Critical review of PD‐MCI. Movement Disorders, 26(10), 1814–1824. https://doi.org/10.1002/mds.23823
  • Liu, Y., Julkunen, V., Paajanen, T., Westman, E., Wahlund, L. -O., Aitken, A., Sobow, T., Mecocci, P., Tsolaki, M., Vellas, B., Muehlboeck, S., Spenger, S., Lovestone, S., Simmons, A., Soininen, H., NeuroMed Consortium. (2012). Education increases reserve against Alzheimer’s disease—evidence from structural MRI analysis. Neuroradiology, 54(9), 929–938. https://doi.org/10.1007/s00234-012-1005-0
  • Lombardi, G., Polito, C., Berti, V., Bagnoli, S., Nacmias, B., Pupi, A., & Sorbi, S. (2018). Contribution of bilingualism to cognitive reserve of an Italian literature professor at high risk for Alzheimer’s disease. Journal of Alzheimer's Disease, 66(4), 1389–1395.
  • McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., W.E Klunk, W. J. Koroshetz, J. J. Manly, Mayeux R., R.C. Mohs (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the national institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 263–269. https://doi.org/10.1016/j.jalz.2011.03.005
  • Mitoma, H., Buffo, A., Gelfo, F., Guell, X., Fucà, E., Kakei, S., Lee J, Manto M., Petrosini L., A.G. Shaikh, J. D. Schmahmann. (2020). Consensus paper. Cerebellar reserve: From cerebellar physiology to cerebellar disorders. The Cerebellum, 19(1), 131–153. https://doi.org/10.1007/s12311-019-01091-9
  • Mok, V., Wong, K. K., Xiong, Y., Wong, A., Schmidt, R., Chu, W., Hu X., E.Y. Leung, Chen S., Chen Y., W.K. Tang (2011). Cortical and frontal atrophy are associated with cognitive impairment in age-related confluent white-matter lesion. Journal of Neurology, Neurosurgery & Psychiatry, 82(1), 52–57. https://doi.org/10.1136/jnnp.2009.201665
  • Mungas, D., Gavett, B., Fletcher, E., Farias, S. T., DeCarli, C., & Reed, B. (2018). Education amplifies brain atrophy effect on cognitive decline: Implications for cognitive reserve. Neurobiology of Aging, 68, 142–150. https://doi.org/10.1016/j.neurobiolaging.2018.04.002
  • Nordlund, A., Rolstad, S., Klang, O., Lind, K., Hansen, S., & Wallin, A. (2007). Cognitive profiles of mild cognitive impairment with and without vascular disease. Neuropsychology, 21(6), 706. https://doi.org/10.1037/0894-4105.21.6.706
  • Osone, A., Arai, R., Hakamada, R., & Shimoda, K. (2015). Impact of cognitive reserve on the progression of mild cognitive impairment to Alzheimer’s disease in Japan. Geriatrics & Gerontology International, 15(4), 428–434. https://doi.org/10.1111/ggi.12292
  • Pa, J., Boxer, A., Chao, L. L., Gazzaley, A., Freeman, K., Kramer, J., B. L. Miller, M. W. Weiner, Neuhaus J., J. K. Johnson (2009). Clinical‐neuroimaging characteristics of dysexecutive mild cognitive impairment. Annals of Neurology, 65(4), 414–423. https://doi.org/10.1002/ana.21591
  • Petersen, R. C. (2011). Mild cognitive impairment. The New England Journal of Medicine, 364(23), 2227–2234. https://doi.org/10.1056/NEJMcp0910237
  • Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62(7), 1160–1163. https://doi.org/10.1001/archneur.62.7.1160
  • Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation (Vol. 4). Reitan Neuropsychology.
  • Roberts, R. O., Geda, Y. E., Knopman, D. S., Cha, R. H., Boeve, B. F., Ivnik, R. J., V. S. Pankratz, E. G. Tangalos, R. C. Petersen (2010). Metabolic syndrome, inflammation, and non-amnestic mild cognitive impairment in older persons: A population-based study. Alzheimer Disease and Associated Disorders, 24(1), 11. https://doi.org/10.1097/WAD.0b013e3181a4485c
  • Roberts, R. O., Knopman, D. S., Geda, Y. E., Cha, R. H., Roger, V. L., & Petersen, R. C. (2010). Coronary heart disease is associated with non-amnestic mild cognitive impairment. Neurobiology of Aging, 31(11), 1894–1902. https://doi.org/10.1016/j.neurobiolaging.2008.10.018
  • Roldan-Tapia, L., Garcia, J., Canovas, R., & Leon, I. (2012). Cognitive reserve, age, and their relation to attentional and executive functions. Applied Neuropsychology, Adult, 19(1), 2–8. https://doi.org/10.1080/09084282.2011.595458
  • Rotblatt, L. J., Aiken-Morgan, A. T., Marsiske, M., Horgas, A. L., & Thomas, K. R. (2021). Do associations between vascular risk and mild cognitive impairment vary by race? Journal of Aging and Health, 898264320984357. https://doi.org/10.1177/0898264320984357
  • Rovio, S., Spulber, G., Nieminen, L. J., Niskanen, E., Winblad, B., Tuomilehto, J., Nissinen A., Soininen H., Kivipelto M. (2010). The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging, 31(11), 1927–1936. https://doi.org/10.1016/j.neurobiolaging.2008.10.007
  • Serra, L., Cercignani, M., Petrosini, L., Basile, B., Perri, R., Fadda, L., Spano B., Marra C., Giubilei F., G. A. Carlesimo. (2011). Neuroanatomical correlates of cognitive reserve in Alzheimer disease. Rejuvenation Research, 14(2), 143–151. https://doi.org/10.1089/rej.2010.1103
  • Serra, L., Mancini, M., Cercignani, M., DiDomenico, C., Spanò, B., Giulietti, G., Koch G., Marra C., Bozzali M. (2017). Network-based substrate of cognitive reserve in Alzheimer’s disease. Journal of Alzheimer’s Disease, 55(1), 421–430. https://doi.org/10.3233/JAD-160735
  • Soldan, A., Pettigrew, C., Cai, Q., Wang, J., Wang, M. C., Moghekar, A., M. I. Miller, Albert M., (2017). Cognitive reserve and long-term change in cognition in aging and preclinical Alzheimer’s disease. Neurobiology of Aging, 60, 164–172. https://doi.org/10.1016/j.neurobiolaging.2017.09.002
  • Sole-Padulles, C., Bartres-Faz, D., Junque, C., Vendrell, P., Rami, L., Clemente, I. C., Bosch B, Villar A., Bargalló N., M. A. Jurado (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 1114–1124. https://doi.org/10.1016/j.neurobiolaging.2007.10.008
  • Soriano-Raya, J. J., Miralbell, J., López-Cancio, E., Bargalló, N., Arenillas, J. F., Barrios, M., Cáceres C., Toran P., Alzamora M., Dávalos A., Mataró M. (2012). Deep versus periventricular white matter lesions and cognitive function in a community sample of middle-aged participants. Journal of the International Neuropsychological Society, 18(5), 874–885. https://doi.org/10.1017/S1355617712000677
  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004
  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet neurology, 11(11), 1006–1012. https://doi.org/10.1016/s1474-4422(12)70191-6
  • Stern, Y., Arenaza‐urquijo, E. M., Bartrés‐faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers M., Franzmeier N., Kempermann G., W. S. Kremen, Okonkwo O. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s & Dementia, 16(9), 1305–1311. https://doi.org/10.1016/j.jalz.2018.07.219
  • Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., Flynn J, Sackeim H., Van Heertum R. (2004). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402. https://doi.org/10.1093/cercor/bhh142
  • Sudo, F. K., Alves, C. E. O., Alves, G. S., Ericeira-Valente, L., Tiel, C., Moreira, D. M., Laks J., Engelhardt E. (2012). Dysexecutive syndrome and cerebrovascular disease in non-amnestic mild cognitive impairment: A systematic review of the literature. Dementia & Neuropsychologia, 6(3), 145–151. https://doi.org/10.1590/S1980-57642012DN06030006
  • Tang, J., Shi, L., Zhao, Q., Zhang, M., Ding, D., Yu, B., & Fu, J. (2017). Coexisting cortical atrophy plays a crucial role in cognitive impairment in patients with moderate to severe cerebral small vessel disease. Discovery Medicine, 23(126), 175–182.
  • Vasquez, B. P., & Zakzanis, K. K. (2015). The neuropsychological profile of vascular cognitive impairment not demented: A meta‐analysis. Journal of Neuropsychology, 9(1), 109–136. https://doi.org/10.1111/jnp.12039
  • Vujic, A., Mowszowski, L., Meares, S., Duffy, S., Batchelor, J., & Naismith, S. L. (2021). Engagement in cognitively stimulating activities in individuals with mild cognitive impairment: Relationships with neuropsychological domains and hippocampal volume. Aging, Neuropsychology, and Cognition, 29(6), 1–22. https://doi.org/10.1080/13825585.2021.1955822
  • Wechsler, D. (2008). Wechsler adult intelligence scale–fourth edition (WAIS–IV). San Antonio, TX: NCS Pearson, 22(498), 816–827.
  • Wechsler, D. (2009). WMS-IV: Wechsler Memory Scale. Pearson.
  • Wilkinson, G. S., & Robertson, G. J. (2006). Wide range achievement test (WRAT4). Psychological Assessment Resources.
  • Yoon, C. W., Seo, S. W., Park, J. -S., Kwak, K. -C., Yoon, U., Suh, M. K., G. H. Kim, J. S. Shin, C. H. Kim, Noh Y., Cho H. (2013). Cerebellar atrophy in patients with subcortical-type vascular cognitive impairment. The Cerebellum, 12(1), 35–42. https://doi.org/10.1007/s12311-012-0388-0
  • Zhang, H., Sachdev, P. S., Wen, W., Kochan, N. A., Crawford, J. D., Brodaty, H., M. J. Slavin, Reppermund S., Draper B., Zhu W., Kang K. (2012). Gray matter atrophy patterns of mild cognitive impairment subtypes. Journal of the Neurological Sciences, 315(1–2), 26–32. https://doi.org/10.1016/j.jns.2011.12.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.