39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Age-related changes in the effects of induced positive affect on executive control in younger and older adults—evidence from a task-switching paradigm

, &
Received 03 Aug 2023, Accepted 23 Dec 2023, Published online: 07 Jun 2024

References

  • Alexander, R., Aragón, O. R., Bookwala, J., Cherbuin, N., Gatt, J. M., Kahrilas, I. J., Kästner, N., Lawrence, A., Lowe, L., Morrison, R. G., Mueller, S. C., Nusslock, R., Papadelis, C., Polnaszek, K. L., Richter, S. H., Silton, R. L., & Styliadis, C. (2021). The neuroscience of positive emotions and affect: Implications for cultivating happiness and wellbeing. Neuroscience & Biobehavioral Reviews, 121, 220–249. https://doi.org/10.1016/j.neubiorev.2020.12.002
  • Ashby, F. G., Isen, A. M., & Turken, U. (1999). A neuropsychological theory of positive affect and its influence on cognition. Psychological Review, 106(3), 529–550. https://doi.org/10.1037/0033-295X.106.3.529
  • Bäckman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34(5), 670–677. https://doi.org/10.1016/j.neubiorev.2009.12.008
  • Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage: Reports, 76, 412–427. https://doi.org/10.1016/j.neuroimage.2013.02.063
  • Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. https://d i. rg/arXiv:1506.04967v1
  • Borkenau, P., & Ostendorf, F. (1993). NEO-Fünf-Faktoren-Inventar (NEO-FFI) nach Costa und McCrae. Hogrefe.
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010
  • Braver, T. S., & Barch, D. M. (2002). A theory of cognitive control, aging cognition, and neuromodulation. Neuroscience and Biobehavioral Reviews, 26(7), 809–817. https://doi.org/10.1016/S0149-7634(02)00067-2
  • Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. https://doi.org/10.5334/joc.10
  • Butler, K. M., & Weywadt, C. (2013). Age differences in voluntary task switching. Psychology and Aging, 28(4), 1024. https://doi.org/10.1037/a0034937
  • Chiew, K. S., & Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology, 2, 279. https://doi.org/10.3389/fpsyg.2011.00279
  • Chiew, K. S., & Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective & Behavioral Neuroscience, 14(2), 509–529. https://doi.org/10.3758/s13415-014-0280-0
  • Compton, R. J., Wirtz, D., Pajoumand, G., Claus, E., & Heller, W. (2004). Association between positive affect and attentional shifting. Cognitive Therapy and Research, 28(6), 733–744. https://doi.org/10.1007/s10608-004-0663-6
  • Cooper, J. A., Sagar, H. J., Jordan, N., Harvey, N. S., & Sullivan, E. V. (1991). Cognitive impairment in early, untreated Parkinson’s disease and its relationship to motor disability. Brain A Journal of Neurology, 114(5), 2095–2122. https://doi.org/10.1093/brain/114.5.2095
  • Craik, F. I. M., & Salthouse, T. A. (Eds.). (2008). The handbook of aging and cognition (3rd ed.). Psychology Press.
  • Cudo, A., Francuz, P., Augustynowicz, P., & Strozak, P. (2018). The effects of arousal and approach motivated positive affect on cognitive control. An ERP study. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00320
  • de Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and Performance XVIII (pp. 357–376). Cambridge, MA: MIT Press.
  • Demanet, J., Liefooghe, B., & Verbruggen, F. (2011). Valence, arousal, and cognitive control: A voluntary task-switching study. Frontiers in Psychology, 24(2), 336. https://doi.org/10.3389/fpsyg.2011.00336
  • Dreisbach, G. (2006). How positive affect modulates cognitive control: The costs and benefits of reduced maintenance capability. Brain & Cognition, 60(1), 11–19. https://doi.org/10.1016/j.bandc.2005.08.003
  • Dreisbach, G., & Fröber, K. (2019). On how to be flexible (or not): Modulation of the stability-flexibility balance. Current Directions in Psychological Science, 28(1), 3–9. https://doi.org/10.1177/0963721418800030
  • Dreisbach, G., & Goschke, T. (2004). How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 343–353. https://doi.org/10.1037/0278-7393.30.2.343
  • Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as representation of momentum. Trends in Cognitive Sciences, 20(1), 15–24. https://doi.org/10.1016/j.tics.2015.07.010
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
  • Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874–890. https://doi.org/10.1080/13803390490510680
  • Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., Von Cramon, D. Y., Ridderinkhof, K. R., & Wagenmakers, E. J. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences, 105(45), 17538–17542. https://doi.org/10.1073/pnas.0805903105
  • Fröber, K., & Dreisbach, G. (2012). How positive affect modulates proactive control: Reduced usage of informative cues under positive affect with low arousal. Frontiers in Psychology, 3, 265. https://doi.org/10.3389/fpsyg.2012.00265
  • Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19(5), 476–482. https://doi.org/10.1111/j.1467-9280.2008.02112.x
  • Gable, P. A., & Harmon-Jones, E. (2010). The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information. Emotion, 10(4), 599–603. https://doi.org/10.1037/a0018426
  • Gajewski, P. D., Ferdinand, N. K., Kray, J., & Falkenstein, M. (2018). Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neuroscience and Biobehavioral Reviews, 92, 255–275. https://doi.org/10.1016/j.neubiorev.2018.05.029
  • Garland, E. L., Fredrickson, B., Kring, A. M., Johnson, D. P., Meyer, P. S., & Penn, D. L. (2010). Upward spirals of positive emotions counter downward spirals of negativity: Insights from the broaden-and-build theory and affective neuroscience on the treatment of emotion dysfunctions and deficits in psychopathology. Clinical Psychology Review, 30(7), 849–864. https://doi.org/10.1016/j.cpr.2010.03.002
  • Gendolla, G. H. E. (2000). On the impact of mood on behavior: An integrative theory and a review. Review of General Psychology, 4(4), 378–408. https://doi.org/10.1037/1089-2680.4.4.378
  • Gendolla, G. H. E., & Krüsken, J. (2002). The joint effect of informational mood impact and performance-contingent consequences on effort-related cardiovascular response. Journal of Personality & Social Psychology, 83(2), 271–283. https://doi.org/10.1037/0022-3514.83.2.271
  • Goschke, T., & Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia, 62, 403–423. https://doi.org/10.1016/j.neuropsychologia.2014.07.015
  • Grahek, I., Musslick, S., & Shenhav, A. (2020). A computational perspective on the roles of affect in cognitive control. International Journal of Psychophysiology, 151, 25–34. https://doi.org/10.1016/j.ijpsycho.2020.02.001
  • Hess, T. M., Lothary, A. F., O’Brien, E. L., Growney, C. M., & DeLarosa, J. (2021). Predictors of engagement in young and older adults: The role of specific activity experience. Psychology and Aging, 36(2), 131. https://doi.org/10.1037/pag0000561
  • Hess, T. M., Neupert, S. D., & Lothary, A. F. (2022). Aging attitudes and changes in the costs of cognitive engagement in older adults over 5 years. Psychology and Aging, 37(4), 456. https://doi.org/10.1037/pag0000685
  • Hsieh, S., & Lin, S. J. (2019). The dissociable effects of induced positive and negative moods on cognitive flexibility. Scientific Reports, 9(1), 1126. https://doi.org/10.1038/s41598-018-37683-4
  • Kaczmarek, L. D., Behnke, M., Enko, J., Kosakowski, M., Hughes, B. M., Piskorski, J., & Guzik, P. (2019). Effects of emotions on heart rate asymmetry. Psychophysiology, 56(4). https://doi.org/10.1111/psyp.13318
  • Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39(4), 341. https://doi.org/10.1037/0003-066X.39.4.341
  • Karayanidis, F., Mansfield, E. L., Galloway, K. L., Smith, J. L., Provost, A., & Heathcote, A. (2009). Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cognitive, Affective & Behavioral Neuroscience, 9, 202–215.
  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task‐switching training. Developmental Science, 12(6), 978–990. https://doi.org/10.1111/j.1467-7687.2009.00846.x
  • Karbach, J., & Verhaegen, P. (2014). Making working memory work: A meta-analysis of executive-control and working memory training in older adults. Psychological Science, 25(11), 2027–2037. https://doi.org/10.1177/0956797614548725
  • Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2014). Revisiting the effects of Parkinson’s disease and frontal lobe lesions on task switching: The role of rule reconfiguration. Journal of Neuropsychology, 8(1), 53–74. https://doi.org/10.1111/jnp.12004
  • Kehagia, A. A., Cools, R., Barker, R. A., & Robbins, T. W. (2009). Switching between abstract rules reflects disease severity but not dopaminergic status in Parkinson’s disease. Neuropsychologia, 47(4), 1117–1127. https://doi.org/10.1016/j.neuropsychologia.2009.01.002
  • Kehagia, A. A., Murray, G. K., & Robbins, T. W. (2010). Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation. Current Opinion in Neurobiology, 20(2), 1–6. https://doi.org/10.1016/j.conb.2010.01.007
  • Kiesel, A., Steinhauser, M., Wendt, M., Falkenstein, M., Jost, K., Philipp, A. M., & Koch, I. (2010). Control and interference in task switching--a review. Psychological Bulletin, 136(5), 849–874. https://doi.org/10.1037/a0019842
  • Koch, I., Poljac, E., Müller, H., & Kiesel, A. (2018). Cognitive structure, flexibility, and plasticity in human multitasking-An integrative review of dual-task and task-switching research. Psychollogical Bulletin, 144(6), 557–583. https://doi.org/10.1037/bul0000144
  • Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15(1), 126–147. https://doi.org/10.1037/0882-7974.15.1.126
  • Kuhbandner, C., & Zehetleitner, M. (2011). Dissociable effects of valence and arousal in adaptive executive control. Public Library of Science ONE, 6(12). https://doi.org/10.1371/journal.pone.0029287
  • Kumle, L., Võ, M. L. H., & Draschko, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 53(6), 2528–2543. https://doi.org/10.3758/s13428-021-01546-0
  • Lehrl, S. (1977). Mehrfach-Wahl-Wortschatz-Test B (MWT-B). Straube.
  • Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., & Forstmann, B. U. (2011). Adjustments of response threshold during task switching: A model-based functional magnetic resonance imaging study. The Journal of Neuroscience, 31(41), 14688–14692. https://doi.org/10.1523/JNEUROSCI.2390-11.2011
  • Martin, E. A., & Kerns, J. G. (2011). The influence of positive mood on different aspects of cognitive control. Cognition & Emotion, 25(2), 265–279. https://doi.org/10.1080/02699931.2010.491652
  • Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9(10), 496–502. https://doi.org/10.1016/j.tics.2005.08.005
  • Matias, S., Lottem, E., Dugue, G. P., & Mainen, Z. F. (2017). Activity patterns of serotonin neurons underlying cognitive flexibility. eLife, 6, e20552. https://doi.org/10.7554/eLife.20552
  • Mayr, U. (2001). Age differences in the selection of mental sets: The role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16(1), 96–109. https://doi.org/10.1037/0882-7974.16.1.96
  • Mayr, U., Kuhns, D., & Hubbard, J. (2014). Long-term memory and the control of attentional control. Cognitive Psychology, 72, 1–26. https://doi.org/10.1016/j.cogpsych.2014.02.001
  • McDaniel, M. A., Einstein, G. O., Stout, A. C., & Morgan, Z. (2003). Aging and maintaining intentions over delays: Do it or lose it. Psychology and Aging, 18(4), 823. https://doi.org/10.1037/0882-7974.18.4.823
  • McNair, D. M., Lorr, M., & Droppleman, L. F. (1971). Manual for the profile of mood states (POMS). Educational and Industrial Testing Service.
  • Monsell, S. (2003). Task switching. Trends in cognitive sciences, 7(3), 134–140. https://doi.org/10.1016/s1364-6613(03)00028-7
  • Nashiro, K., Qin, S., O’Connell, M. A., & Basak, C. (2018). Age-related differences in BOLD modulation to cognitive control costs in a multitasking paradigm: Global switch, local switch, and compatibility-switch costs. Neuroimage: Reports, 172, 146–161. https://doi.org/10.1016/j.neuroimage.2018.01.030
  • Nittono, H., Fukushima, M., Yano, A., Moriya, H., & Paterson, K. (2012). The power of kawaii: Viewing cute images promotes a careful behavior and narrows attentional focus. Public Library of Science ONE, 7(9), e46362. https://doi.org/10.1371/journal.pone.0046362
  • Nusbaum, A., Wilson, C., Stenson, A., Hinson, J., & Whitney, P. (2018). Induced positive mood and cognitive flexibility: Evidence from task switching and reversal learning. Collabra: Psychology, 4(1), 25. https://doi.org/10.1525/collabra.150
  • Oberauer, K. (2001). Removing irrelevant information from working memory: A cognitive aging study with the modified Sternberg task. Journal of Experimental Psychology: Learning, Memory and Cognition, 27(4), 948–957. https://doi.org/10.1037//0278-7393.27.4.948
  • Paul, K., Pourtois, G., van Steenbergen, H., Gable, P., & Dreisbach, G. (2021). Finding a balance: Modulatory effects of positive affect on attentional and cognitive control. Current Opinion in Behavioral Sciences, 39, 136–141. https://doi.org/10.1016/j.cobeha.2021.03.002
  • Pertzov, Y., Heider, M., Liang, Y., & Husain, M. (2015). Effects of healthy ageing on precision and binding of object location in visual short term memory. Psychology and Aging, 30(1), 26–35. https://doi.org/10.1037/a0038396
  • Pettigrew, C., & Martin, R. C. (2014). Cognitive declines in healthy aging: Evidence from multiple aspects of interference resolution. Psychology and Aging, 29(2), 187. https://doi.org/10.1037/a0036085
  • Phillips, L. H., Bull, R., Adams, E., & Fraser, L. (2002). Positive mood and executive function: Evidence from stroop and fluency tasks. Emotion, 2(1), 12–22. https://doi.org/10.1037/1528-3542.2.1.12
  • Raven, J., Raven, J. C., & Court, J. H. (1998). Advanced progressive matrices, 1998 Edition. Oxford Psychologists Press.
  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  • Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231. http://dx.doi.org/10.1037/0096-3445.124.2.207
  • Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology. Human Perception and Performance, 27, 763–797. http://dx.doi.org/10.1037/0096-1523.27.4.763
  • Ryan, A. D., & Campbell, K. L. (2021). The ironic effect of older adults’ increased task motivation: Implications for neurocognitive aging. Psychonomic Bulletin & Review, 28(6), 1743–1754. https://doi.org/10.3758/s13423-021-01963-4
  • Schmitz, F., & Voss, A. (2012). Decomposing task-switching costs with the diffusion model. Journal of Experimental Psychology. Human Perception and Performance, 38(1), 222–250. https://doi.org/10.1037/a0026003
  • Schuch, S., & Pütz, S. (2018). Mood state dissociates conflict adaptation within tasks and across tasks. Journal of Experimental Psychology: Learning, Memory & Cognition, 44(9), 1487–1499. https://doi.org/10.1037/xlm0000530
  • Schuch, S., Zweerings, J., Hirsch, P., & Koch, I. (2017). Conflict adaptation in positive and negative mood: Applying a success-failure manipulation. Acta Psychologica, 176, 11–22. https://doi.org/10.1016/j.actpsy.2017.03.005
  • Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.2013.07.007
  • Standage, D., Blohm, G., & Dorris, M. C. (2014). On the neural implementation of the speed-accuracy trade-off. Frontiers in Neuroscience, 8, 236. https://doi.org/10.3389/fnins.2014.00236
  • Steinhauser, M., & Hübner, R. (2005). Mixing costs in task shifting reflect sequential processing stages in a multicomponent task. Memory & Cognition, 33(8), 1484–1494. https://doi.org/10.3758/BF03193380
  • Stevens, M., & Brysbaert, M. (2016). When do we have enough power in language research? Evidence from priming studies [ Unpublished manuscript]. http://crr.ugent.be/papers/When%20do%20we%20have%20enough%20power%20in%20language%20research.pdf
  • Tice, D. M., Baumeister, R. F., Shmueli, D., & Muraven, M. (2007). Restoring the self: Positive affect helps improve self-regulation following ego depletion. Journal of Experimental Social Psychology, 43(3), 379–384. https://doi.org/10.1016/j.jesp.2006.05.007
  • Uddin, L. Q. (2021). Cognitive and behavioural flexibility: Neural mechanisms and clinical considerations. Nature Reviews Neuroscience, 22(3), 167–179. https://doi.org/10.1038/s41583-021-00428-w
  • Unger, K., & Karbach, J. (2017). Executive functions. In N. Pachana (Ed.), Encyclopedia of geropsychology (pp. 1–10). Springer.
  • Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136(4), 601–626. https://doi.org/10.1037/a0019791
  • Vanlessen, N., De Raedt, R., Mueller, S. C., Rossi, V., & Pourtois, G. (2015). Happy and less inhibited? Effects of positive mood on inhibitory control during an antisaccade task revealed using topographic evoked potential mapping. Biological Psychology, 110, 190–200. https://doi.org/10.1016/j.biopsycho.2015.07.004
  • van Steenbergen, H., Band, G. P., Hommel, B., Rombouts, S. A., & Nieuwenhuis, S. (2015). Hedonic hotspots regulate cingulate-driven adaptation to Cognitive Demands. Cerebral Cortex (New York, NY: 1991), 25(7). https://doi.org/10.1093/cercor/bht416
  • Van Wouwe, N. C., Band, G. P. H., & Ridderinkhof, K. R. (2010). Positive affect modulates flexibility and evaluative control. Journal of Cognitive Neuroscience, 23(3), 524–539. https://doi.org/10.1162/jocn.2009.21380
  • van Wouwe, N. C., Band, G. P., & Ridderinkhof, K. R. (2011). Positive affect modulates flexibility and evaluative control. Journal of cognitive neuroscience, 23(3), 524–539. https://doi.org/10.1162/jocn.2009.21380
  • Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience & Biobehavioral Reviews, 26(7), 849–857. https://doi.org/10.1016/S0149-7634(02)00071-4
  • Vink, M., Kleerekooper, I., van den Wildenberg, W. P. M., & Kahn, R. S. (2015). Impact of aging on frontostriatal reward processing. Human Brain Mapping, 36(6), 2305–2317. https://doi.org/10.1002/hbm.22771
  • Volkow, N. D., Logan, J., Fowler, J. S., Wang, G. J., Gur, R. C., Wong, C., Felder, C., Gatley, S. J., Ding, Y. S., Hitzemann, R., & Pappas, N. (2000). Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. The American Journal of Psychiatry, 157(1), 75–80. https://doi.org/10.1176/ajp.157.1.75
  • Walker, S., Robbins, T., & Roberts, A. (2009). Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset. Cerebral Cortex, 19(4), 889–898. https://doi.org/10.1093/cercor/bhn136
  • Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and task switching: A meta-analysis. Psychology and Aging, 26(1), 15–20. https://doi.org/10.1037/a0020912
  • Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063–1070. https://doi.org/10.1037/0022-3514.54.6.1063
  • Wechsler, D. (2012). Wechsler adult intelligence scale (F. Petermann, Ed.). (4th German Version). Hogrefe.
  • Whitson, L. R., Karayanidis, F., & Michie, P. T. (2012). Task practice differentially modulates task-switching performance across the adult lifespan. Acta Psychologica, 139(1), 124–136. https://doi.org/10.1016/j.actpsy.2011.09.004
  • Wolff, W., Sieber, V., Bieleke, M., & Englert, C. (2021). Task duration and task order do not matter: No effect on self-control performance. Psychological Research, 85(1), 397–407. https://doi.org/10.1007/s00426-019-01230-1
  • Yang, H., & Yang, S. (2014). Positive affect facilitates task switching in the dimensional change card sort task: Implications for the shifting aspect of executive function. Cognition and Emotion, 28(7), 1242–1254. https://doi.org/10.1080/02699931.2013.879053
  • Yuan, J., Xu, S., Yang, J., Liu, Q., Chen, A., Zhu, L., Chen, J., & Li, H. (2011). Pleasant mood intensifies brain processing of cognitive control: ERP correlates. Biological Psychology, 87(1), 17–24. https://doi.org/10.1016/j.biopsycho.2011.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.