Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 22, 2016 - Issue 2
550
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study of forebody wake effect on axisymmetric parachute opening shock and drag reduction

&
Pages 141-159 | Received 09 Jul 2015, Accepted 29 Jan 2016, Published online: 16 Mar 2016

References

  • T.W. Knacke, Parachute Recovery Systems: Design Manual, Para Pub, Santa Barbara, CA, 1992.
  • P.S. Jason and A. Hart, Canned telemetry system for sensor data on parachute system, AIAA. 15 (2005), pp. l3.
  • Y. Li, Z. Xinhua, and L. Shuisheng, Experimental on canopy payload performance of parachute, J. Beijing Univ Aeronaut. Astronaut. 33 (10) (2007), pp. 1178.
  • L. Yu, X. Ming, and B. Hu, Experimental investigation in parachute opening process, J. Nanjing Univ. Aeronaut. Astronaut 38 (2) (2006), pp. 176–180.
  • B.A. Tutt and A.P. Taylor. The use of LS-DYNA to simulate the inflation of a parachute canopy.18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. 2005.
  • Y. Fan and J. Xia, Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method, Chin. J. Aeronautics 27 (6) (2014), pp. 1373–1383. doi:10.1016/j.cja.2014.10.003
  • B. Tutt, S. Roland, R.D. Charles, and G. Noetscher, Finite mass simulation techniques in LS-DYNA, 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Dublin, 2011, pp. 2592.
  • J. Kim, Y. Li, and X. Li, Simulation of parachute FSI using the front tracking method, J. Fluids Struct. 37 (2013), pp. 100–119. doi:10.1016/j.jfluidstructs.2012.08.011
  • Y. Kim and C.S. Peskin, 3-D parachute simulation by the immersed boundary method, Comput. Fluids 38 (6) (2009), pp. 1080–1090. doi:10.1016/j.compfluid.2008.11.002
  • Y. Kim and C.S. Peskin, 2-D parachute simulation by the immersed boundary method, SIAM J. Scientific Comput. 28 (6) (2006), pp. 2294–2312. doi:10.1137/S1064827501389060
  • L. Yu, H. Cheng, Y. Zhan, and S. Li, Study of parachute inflation process using fluid–structure interaction method, Chin. J. Aeronautics 27 (2) (2014), pp. 272–279. doi:10.1016/j.cja.2014.02.021
  • H. Cheng, X.-H. Zhang, L. Yu, and M. Chen, Study of velocity effects on parachute inflation performance based on fluid–structure interaction method, Appl. Math. Mech. 35 (9) (2014), pp. 1177–1188. doi:10.1007/s10483-014-1852-6
  • K.R. Stein and R.J. Benney, Parachute inflation: A problem in aeroelasticity, DTIC Document, 1994.
  • K.R. Stein, R.J. Benney, and E.C. Steeves, A computational model that couples aerodynamic and structural dynamic behavior of parachutes during the opening process, DTIC Document, 1993.
  • L. Yu and X. Ming, Study on transient aerodynamic characteristics of parachute opening process, Acta Mech Sin 23 (6) (2007), pp. 627–633. doi:10.1007/s10409-007-0112-3
  • H.G. Heinrich and T. Riabokin, “Analytical and experimental considerations of the velocity distribution in the wake of a body of revolution”. 1959, DTIC Document.
  • C.W. Peterson and D.W. Johnson, Reductions in parachute drag due to forebody wake effects, J. Aircr. 20 (1) (1983), pp. 42–49. doi:10.2514/3.44826
  • A. Sengupta, B. Goree, E.B. White, J. Guthery, R. Machin, G. Bourland, J. Laguna, R. Sinclair, and E. Hennings, Performance of a Subscale CPAS Conical Ribbon Drogue Parachute in a Turbulent Wake, AIAA Aerodynamic Decelerator Systems (ADS) Conference, Reston, VA, 2013, pp. 1307.
  • M. McQuilling and J. Potvin. Forebody wake effects on the aerodynamics of an annular parachute. 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012.
  • X. Xue, H. Koyama, Y. Nakamura, and C.-Y. Wen, Effects of suspension line on flow field around a supersonic parachute, Aerosp. Sci. Technol. 43 (2015), pp. 63–70. doi:10.1016/j.ast.2015.02.014
  • E.S. Ray and A.L. Morris. Measurement of CPAS main parachute rate of descent. 21st AIAA Aerodynamic Decelerator Systems Technology Conference. 2011.
  • G. Guglieri, Parachute–payload system flight dynamics and trajectory simulation, Int. J. Aerosp. Eng. 2012 (2012), pp. 1–17. doi:10.1155/2012/182907
  • W.D. Sundberg, New solution method for steady-state canopy structural loads, J. Aircr. 25 (11) (1988), pp. 1045–1051. doi:10.2514/3.45701
  • L.A. Piegl and W. Tiller, The NURBS Book, Springer, Berlin, 1997.
  • D. Ormières and M. Provansal, Transition to turbulence in the wake of a sphere, Phys. Rev. Lett. 83 (1) (1999), pp. 80–83. doi:10.1103/PhysRevLett.83.80
  • A. Prosperetti and G. Tryggvason, Computational Methods for Multiphase Flow, Cambridge University Press, New York, 2007.
  • H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Edinburgh Gate, Harlow, 2007.
  • E. Lefrançois, A simple mesh deformation technique for fluid–structure interaction based on a submesh approach, Int. J. Numer. Methods. Eng. 75 (9) (2008), pp. 1085–1101. doi:10.1002/nme.v75:9
  • F.J. Blom, Considerations on the spring analogy, Int. J. Numer. Methods Fluids 32 (6) (2000), pp. 647–668. doi:10.1002/(ISSN)1097-0363
  • K. Stein, T. Tezduyar, and R. Benney, Mesh moving techniques for fluid–structure interactions with large displacements, J. Appl. Mech. 70 (1) (2003), pp. 58–63. doi:10.1115/1.1530635
  • L.K. Abbas, D. Chen, and X. Rui, Numerical calculation of effect of elastic deformation on aerodynamic characteristics of a rocket, Int. J. Aerosp. Eng. 2014 (2014), pp. 1–11. doi:10.1155/2014/478534
  • N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, Addison-Wesley, Upper Saddle River, NJ, 2012.
  • K.J. Desabrais, Velocity field measurements in the near wake of a parachute canopy. ProQuest dissertations and theses; Thesis–Worcester Polytechnic Institute, 2002.
  • X. Pan, L. Hu, and Y. Cao, Analysis of dynamic simulation and fluid field of parachute in inflation stage, J. Aerosp. Power. 1 (2008), pp. 015.
  • R. Ross and F. Nebiker, Survey of aerodynamic deceleration systems, 3rd Annual Meeting, Boston, MA, 1966, pp. 988.
  • C. Jiang, Influence of low angle of attack on the flowfield characteristics of an axisymmetric parachute in terminal descent. Chin. Space Sci. Technol. 27 (2007), pp. 59–65.
  • J.C.C.Y. Wenhan, The flowfield characteristics of an axisymmetric parachute in terminal descent, Spacecr. Recovery Remote Sens. 3 (2005), pp. 004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.