1,883
Views
3
CrossRef citations to date
0
Altmetric
Articles

Object-oriented modelling of wind turbines and its application for control design based on nonlinear dynamic inversion

&
Pages 319-340 | Received 19 Feb 2016, Accepted 20 Feb 2017, Published online: 27 Mar 2017

References

  • Modelica Association, editor. Modelica - A Unified Object-Oriented Language for Physical Systems Modeling Language Specification Version 3.2,Como.Linköping: Linköping University Press, 2010.
  • T. Bellmann, Interactive simulations and advanced visualization with modelica, Proceedings of the 7th Modelica Conference, 541–550, 2009.
  • FMI development group, Functional mock-up interface for model exchange and co-simulation. Technical report, MODELISAR consortium, 2014.
  • J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-mw reference wind turbine for offshore system development. Technical report, National Renewable Energy Laboratory, 2009.
  • J. Tobolar, M. Otter, and T. Bünte, Modelling of vehicle powertrains with the modelica powertrain library, in Systemanalyse in Der Kfz-Antriebstechnik IV, Systemanalyse in der Kfz-Antriebstechnik IV”, Essen, Germany, 2007.
  • G. Looye, The new DLR flight dynamics library, Proceedings of the 6th Modelica Conference, 193–202, 2008.
  • A. Heckmann, M. Otter, S. Dietz, and J. Lopez, The DLR Flexible Bodies Library to Model Large Motions of Beams and of Flexible Bodies Exported from Finite Element Programs, The Modelica Association, Linköping University Press, Linköping 2006.
  • M. Hansen, Aerodynamics of Wind Turbines, Earthscan, Routledge, London, 2008.
  • O. Wallrapp, Standardization of flexible body modeling in multibody system codes, part I: definition of standart input data, Mech. Struct. Mach. 22 (3) (1994), pp. 283–304. doi:10.1080/08905459408905214
  • P. Thomas, X. Gu, R. Samlaus, C. Hillmann, and U. Wihlfahrt, The onewind modelica library for wind turbine simulation with flexible structure - modal reduction method in modelica, Proceedings of the 10th International Modelica Conference, 2014.
  • A. Craig Hansen and P.J. Moriarty. Aerodyn theory manual, Technical report, National Renewable Energy Laboratory, 2005.
  • J. Twele and R. Gasch, Windkraftanlagen, Vieweg+Teubner, Wiesbaden, Germany, 2011.
  • D. Zimmer. Using artificial states in modeling dynamic systems: turning malpractice into good practice, Proceedings of the 5th International Workshop on Equation-Based Object-Oriented Languages and Tools (EOOLT), 2013.
  • M. Otter, H. Elmqvist, and S. Mattsson, The new modelica multibody library, Proceedings of the 3rd International Modelica Conference, 2003.
  • F. Dunne, E. Simley, and L. Pao, Lidar wind speed measurement analysis and feed-forward blade pitch control for load mitigation in wind turbines. Technical report, National Renewable Energy Laboratory, 2011.
  • A. Koerber and R. King, Combined feedback–feedforward control of wind turbines using state-constrained model predictive control, Ieee. Trans. Control. Syst. Technol. 21 (4) (2013), pp. 1117–1128. doi:10.1109/TCST.2013.2260749
  • D. Schlipf, T. Fischer, C. Carcangiu, M. Rossetti, and E. Bossanyi. Load analysis of look-ahead collective pitch control using lidar, Proceedings of the 10th German Wind Energy Conference DEWEK, 17-18 Nov 2010. Universität Stuttgart, 2010.
  • N. Wang and K. Johnson, Lidar-based fx-rls feedforward control for wind turbine load mitigation, Proceedings of the 2011 American Control Conference, 2011.
  • J.-J.E. Slotine and L. Weiping, Applied Nonlinear Control, Pearson, Upper Saddle River, NJ, 1991.
  • E. Johnson and A. Calise, Pseudo-Control Hedging: A New Method for Adaptive Control,Workshop on Advances in Guidance and Control Technology, Alabama, USA, 2000.
  • H. Geng, S. Xiao, W. Yang, and G. Yang. Nonlinear dynamic inversion approach applied to pitch control of wind turbines, Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014.
  • F. Holzapfel, Nichtlineare adaptive regelung eines unbemannten fluggerätes, Verlag Dr. Hut.Ph. D. Thesis, Technische Universität München, München,  (2004).
  • T. Lombaerts, G. Looye, Q. Chu, and J. Mulder, Design and simulation of fault tolerant flight control based on a physical approach, Aerospace Sci. Technol. 23 (1) 35th ERF: Progress in Rotorcraft Research (2012), pp. 151–171. doi:10.1016/j.ast.2011.07.004.
  • G. Looye, Design of robust autopilot control laws with nonlinear dynamic inversion, Automatisierungstechnik. 49 (2001), pp. 523–531. doi:10.1524/auto.2001.49.12.523
  • L.Y. Eric Simley, N.K. Pao, B. Jonkman, and R. Frehlich, Lidar wind speed measurements of evolving wind fields, Proc. ASME Wind Energy Symposium, 2012.
  • L.Y. Fiona Dunne, D.S. Pao, and A.K. Scholbrock, Importance of lidar measurement timing accuracy for wind turbine control, American Control Conference, ACC 2014, Portland, OR, USA, June 4-6, 2014, 3716–3721, 2014.
  • D. Schlipf and P.-W. Cheng, Adaptive vorsteuerung für windenergieanlagen, Automatisierungstechnik. 61 (5) (2013), pp. 329–338. doi:10.1524/auto.2013.0029
  • E. Bossanyi, B. Savini, M. Iribas, M. Hau, B. Fischer, D. Schlipf, T. van Engelen, M. Rossetti, and C.E. Carcangiu, Advanced controller research for multi-mw wind turbines in the upwind project, Wind Energy. 15 (1) (2012), pp. 119–145. doi:10.1002/we.v15.1
  • S. Mattsson and G. Söderlind, Index reduction in differential-algebraic equations using dummy derivatives, SIAM J. Scientific Stat. Comput. 14 (1993), pp. 677–692. doi:10.1137/0914043
  • M. Otter, H. Elmqvist, and F. Cellier. Modeling of multibody systems with the object-oriented modeling language dymola, Technical report, 1996.
  • M. Reiner. Modellierung und Steuerung eines strukturelastischen Roboters. PhD thesis, Technische Universität München, 2011.
  • H. Joos, J. Bals, G. Looye, K. Schnepper, and A. Varga. A multi-objective optimisation based software environment for control systems design. Proc. of 2002 IEEE International Conference on Control Applications and International Symposium on Computer Aided Control Systems Design, CCA/CACSD, 2002.
  • M. Reiner and D. Zimmer. Nonlinear dynamic inversion control for wind turbine load mitigation based on wind speed measurement. In Proceedings of the 11th International Modelica Conference, 349–357, 2015.