Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 25, 2019 - Issue 5
543
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

On the evaluation of the takeoff time and of the peak time for innovation diffusion on assortative networks

ORCID Icon &
Pages 482-498 | Received 16 Jan 2019, Accepted 25 Aug 2019, Published online: 05 Sep 2019

References

  • F.M. Bass, A new product growth for model consumer durables, Management Sci 15 (1969), pp. 215–227. doi:10.1287/mnsc.15.5.215.
  • V. Mahajan, E. Muller, and F.M. Bass, New product diffusion models in marketing: a review and directions for research, J. Marketing 54 (1990), pp. 1–26. doi:10.1177/002224299005400101.
  • N. Meade and T. Islam, Modelling and forecasting the diffusion of innovation - a 25-year review, Int. J. Forecasting 22 (2006), pp. 519–545. doi:10.1016/j.ijforecast.2006.01.005.
  • R. Guseo and M. Guidolin, Cellular automata and Riccati equation models for diffusion of innovations, Stat. Methods Appl. 17 (2008), pp. 291–308. doi:10.1007/s10260-007-0059-3.
  • C.E. Laciana, S.L. Rovere, and G.P. Podestà, Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns, Physica A 392 (2013), pp. 1873–1884. doi:10.1016/j.physa.2012.12.023.
  • R. Pastor Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys. 87 (2015), pp. 925–979. doi:10.1103/RevModPhys.87.925.
  • M.L. Bertotti, J. Brunner, and G. Modanese, The Bass diffusion model on networks with correlations and inhomogeneous advertising, Chaos Soliton Fract 90 (2016), pp. 55–63. doi:10.1016/j.chaos.2016.02.039.
  • M.L. Bertotti, J. Brunner, and G. Modanese, Innovation diffusion equations on correlated scale-free networks, Phys. Lett. A 380 (2016), pp. 2475–2479. doi:10.1016/j.physleta.2016.06.003.
  • M. Boguna and R. Pastor Satorras, Epidemic spreading in correlated complex networks, Phys. Rev. E 66 (2002), pp. 047104. doi:10.1103/PhysRevE.66.047104.
  • M. Boguna, R. Pastor Satorras, and A. Vespignani, Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett. 90 (2003), pp. 028701. doi:10.1103/PhysRevLett.90.094302.
  • A. Barrat, M. Barthelemy, and A. Vespignani, Dynamical Processes on Complex Networks, Cambridge University Press, Cambridge, UK, 2008.
  • M.E.J. Newman, The structure and function of complex networks, SIAM Review 45 (2003), pp. 167–256. doi:10.1137/S003614450342480.
  • A.-L. Barabasi, Network Science, Cambridge University Press, Cambridge, UK, 2016.
  • M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89 (2002), pp. 208701. doi:10.1103/PhysRevLett.89.208701.
  • M.E.J. Newman and J. Park, Why social networks are different from other types of networks, Phys. Rev. E 68 (2003), pp. 036122. doi:10.1103/PhysRevE.68.036122.
  • M.E.J. Newman, Mixing patterns in networks, Phys. Rev. E 67 (2003), pp. 026126. doi:10.1103/PhysRevE.67.026126.
  • R. Xulvi-Brunet and I.M. Sokolov, Reshuffling scale-free networks: from random to assortative, Phys. Rev. E 70 (2004), pp. 066102. doi:10.1103/PhysRevE.70.066102.
  • M. Catanzaro, G. Caldarelli, and L. Pietronero, Assortative model for social networks, Phys. Rev. E 70 (2004), pp. 037101. doi:10.1103/PhysRevE.70.037101.
  • Z. Pan, X. Li, and X. Wang, Generalized local-world models for weighted networks, Phys. Rev. E 73 (2006), pp. 056109. doi:10.1103/PhysRevE.73.056109.
  • C.C. Leung and H.F. Chau, Weighted assortative and disassortative network model, Physica A 378 (2007), pp. 591–602. doi:10.1016/j.physa.2006.12.022.
  • M. Karsai, G. Iñiguez, K. Kaski, and J. Kertész, Complex contagion process in spreading of online innovation, J. Roy. Soc. Interface 11 (2014), pp. 20140694. doi:10.1098/rsif.2014.0694.
  • T.M.A. Fink, M. Reeves, R. Palma, and R.S. Farr, Serendipity and strategy in rapid innovation, Nat. Commun. 8 (2017), pp. 2002. doi:10.1038/s41467-017-02042-w.
  • G. Armano and M.A. Javarone, The beneficial role of mobility for the emergence of innovation, Sci Rep. 7 (2017), pp. 1781. doi:10.1038/s41598-017-01955-2.
  • I. Iacopini, S. Milojević, and V. Latora, Network dynamics of innovation processes, Phys. Rev. Lett. 120 (2018), pp. 048301. doi:10.1103/PhysRevLett.120.048301.
  • P. Lorenz-Spreen and B.M. Mnsted, Acceleraing dynamics of collective attention, Nat. Commun. 10 (2019), pp. 1759. doi:10.1038/s41467-019-09311-w.
  • S. Lehmann and -Y.-Y. Ahn, Complex Spreading Phenomena in Social Systems, Springer, Cham, CH, 2018.
  • M.L. Bertotti and G. Modanese, The Bass diffusion model on finite Barabasi-Albert networks, Complexity 2019 (2019), doi:10.1155/2019/6352657.
  • J.P. Gleeson, S. Melnik, J.A. Ward, M.A. Porter, and P.J. Mucha, Accuracy of mean-field theory for dynamics on real-world networks, Phys. Rev. E 85 (2012), pp. 026106. doi:10.1103/PhysRevE.85.026106.
  • M.E.J. Newman, Networks. An Introduction, Oxford University Press, Oxford UK, 2010.
  • M.A. Porter and J.P. Gleeson, Dynamical Systems on Networks, Springer, Cham CH, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.