Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 26, 2020 - Issue 2
2,920
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Growth rate, growth curve and growth prediction of tumour in the competitive model

ORCID Icon &
Pages 193-203 | Received 03 Aug 2019, Accepted 02 Mar 2020, Published online: 26 Mar 2020

References

  • F. Bunz, Principle of Cancer Genetics, Springer, New York, NY, USA, 2008.
  • L. Pecorino, Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics, Oxford university press, 2012.
  • M. Marušić, Ž. Bajzer, J.P. Freyer, and S. Vuk-Pavlović, Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif. 27 (2) (1994), pp. 73–94. doi:10.1111/j.1365-2184.1994.tb01407.x.
  • L.A. Dethlefsen, J.M.S. Prewitt, and M.L. Mendelsohn, Analysis of tumor growth curves, J. Natl. Cancer Inst. 40 (2) (1968), pp. 389–405. doi:10.1093/jnci/40.2.389.
  • A.K. Laird, Dynamics of tumour growth, Br. J. Cancer 18 (3) (1964), pp. 490. doi:10.1038/bjc.1964.55.
  • W.C. Summers, Dynamics of tumor growth: A mathematical model, Growth 30 (1966), pp. 333–338.
  • S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J.M. Ebos, L. Hlatky, and P. Hahnfeldt, Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol. 10 (8) (2014), pp. e1003800. doi:10.1371/journal.pcbi.1003800.
  • P. Gerlee, The model muddle: In search of tumor growth laws, Cancer Res. 73 (8) (2013), pp. 2407–2411. doi:10.1158/0008-5472.CAN-12-4355.
  • P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Corresp. Math. Phys. 10 (1838), pp. 113–126.
  • V.G. Vaidya and F.J. Alexandro, Evaluation of some mathematical models for tumor growth, Int. J. Biomed. Comput. 13 (1) (1982), pp. 19–35. doi:10.1016/0020-7101(82)90048-4.
  • B. Gompertz, XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, In a letter to Francis Baily, Esq. FRS &c. Philos. Trans. R. Soc. London. 115 (1825), pp. 513–583.
  • N. Henscheid, E. Clarkson, K.J. Myers, and H.H. Barrett, Physiological random processes in precision cancer therapy, PLoS ONE. 13 (6) (2018), pp. e0199823. 29. doi:10.1371/journal.pone.0199823.
  • M. Antonopoulos, D. Dionysiou, G. Stamatakos, and N. Uzunoglu, Three-dimensional tumor growth in time-varying chemical fields: A modeling framework and theoretical study, BMC Bioinformatics 20 (1) (2019), pp. 442. doi:10.1186/s12859-019-2997-9.
  • K. Borkenstein, S. Levegrün, and P. Peschke, Modeling and computer simulations of tumor growth and tumor response to radiotherapy, Radiat. Res. 162 (1) (2004), pp. 71–83. doi:10.1667/RR3193.
  • A. Dau, I. Toma-Dau, and M. Karlsson, The effects of hypoxia on the theoretical modelling of tumour control probability, Acta Oncol. (Madr) 44 (6) (2005), pp. 563–571. doi:10.1080/02841860500244435.
  • L.G. Marcu and D. Marcu, In silico modelling of a cancer stem cell-targeting agent and its effects on tumour control during radiotherapy, Sci. Rep. 30 (2016), pp. 3233.
  • L.G. Marcu and W.M. Harriss-Phillips, In silico modelling of treatment-induced tumour cell kill: Developments and advances, Comput. Math. Methods Med. 2012 (2012), pp. 1–16. doi:10.1155/2012/960256.
  • W. Tuckwell, E. Bezak, E. Yeoh, and L. Marcu, Efficient Monte Carlo modelling of individual tumour cell propagation for hypoxic head and neck cancer, Phys. Med. Biol. 53 (17) (2008), pp. 4489. doi:10.1088/0031-9155/53/17/002.
  • H. Maeda and M. Khatami, Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs, Clin. Transl. Med. 7 (1) (2018), pp. 11. doi:10.1186/s40169-018-0185-6.
  • K.D. Miller, R.L. Siegel, C.C. Lin, A.B. Mariotto, J.L. Kramer, J.H. Rowland, K.D. Stein, R. Alteri, and A. Jemal, Cancer treatment and survivorship statistics, CA Cancer J. Clin. 66 (4) (2016), pp. 271–289. doi:10.3322/caac.21349.
  • J. West, Z. Hasnai, J. Mason, and P.K. Newton, The prisoner’s dilemma as a cancer model, Converg. Sci. Phys. Oncol. 2 (3) (2016), pp. 035002. doi:10.1088/2057-1739/2/3/035002.
  • J. West and P.K. Newton, Chemotherapeutic dose scheduling based on tumor growth rates provides a case for low-dose metronomic high-entropy therapies, Cancer Res. 77 (23) (2017), pp. 6717–6728. doi:10.1158/0008-5472.CAN-17-1120.
  • J. West and P.K. Newton, Optimizing chemo-scheduling based on tumor growth rates, bioRxiv (2018), pp. 263327.
  • J. West, et al., Towards multi-drug adaptive therapy, bioRxiv (2018), pp. 476507.
  • A. Kaznatcheev, J. Peacock, D. Basanta, A. Marusyk, and J.G. Scott, Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer, Nat. Ecol. Evol. 3 (3) (2019), pp. 450. doi:10.1038/s41559-018-0768-z.
  • J. West, Z. Hasnain, P. Macklin, and P.K. Newton, An evolutionary model of tumor cell kinetics and the emergence of molecular heterogeneity driving gompertzian growth, SIAM Rev. 58 (4) (2016), pp. 716–736. doi:10.1137/15M1044825.
  • Y. Ma and P.K. Newton, On the design of treatment schedules that avoid chemotherapeutic resistance, bioRxiv (2018), pp. 325381.
  • Y. Ma and P.K. Newton, Nonlinear dynamics of chemotherapeutic resistance, bioRxiv (2018), pp. 300582.
  • M.A. Nowak, Evolutionary Dynamics, Harvard University Press, 2006.
  • S. Prokopiou, E.G. Moros, J. Poleszczuk, J. Caudell, J.F. Torres-Roca, K. Latifi, and H. Enderling, A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiat. Oncol. 10 (1) (2015), pp. 159. doi:10.1186/s13014-015-0465-x.
  • S.A. Davie, J.E. Maglione, C.K. Manner, D. Young, R.D. Cardiff, C.L. MacLeod, and L.G. Ellies, Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice, Transgenic Res. 16 (2) (2007), pp. 193–201. doi:10.1007/s11248-006-9056-9.
  • Y. Kawarada, R. Ganss, N. Garbi, T. Sacher, B. Arnold, and G.J. Hmmerling, NK-and CD8+ T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides, J. Immunol. 167 (9) (2001), pp. 5247–5253. doi:10.4049/jimmunol.167.9.5247.
  • J.E. Talmadge, R.K. Singh, I.J. Fidler, and A. Raz, Murine models to evaluate novel and conventional therapeutic strategies for cancer, Am. J. Pathol. 170 (3) (2007), pp. 793–804. doi:10.2353/ajpath.2007.060929.
  • R.A. Gatenby, A.S. Silva, R.J. Gillies, and B.R. Frieden, Adaptive therapy, Cancer Res. 69 (11) (2009), pp. 4894–4903. doi:10.1158/0008-5472.CAN-08-3658.
  • M. Gluzman, J.G. Scott, and A. Vladimirsky, Optimizing adaptive cancer therapy: Dynamic programming and evolutionary game theory, arXiv Preprint arXiv:1812.01805 (2018).
  • A. Kaznatcheev, R. Vander Velde, J.G. Scott, and D. Basanta, Cancer treatment scheduling and dynamic heterogeneity in social dilemmas of tumour acidity and vasculature, Br. J. Cancer 116 (6) (2017), pp. 785. doi:10.1038/bjc.2017.5.
  • K. Leder, J. Foo, B. Skaggs, M. Gorre, C.L. Sawyers, and F. Michor, Fitness conferred by BCR-ABL kinase domain mutations determines the risk of pre-existing resistance in chronic myeloid leukemia, PLoS ONE. 6 (11) (2011), pp. e27682. 28. doi:10.1371/journal.pone.0027682.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.