Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 29, 2023 - Issue 1
830
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar

ORCID Icon, , , , , ORCID Icon & show all
Pages 116-148 | Received 13 Mar 2022, Accepted 23 Jan 2023, Published online: 27 May 2023

References

  • A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Foundations and Trends in Systems and Control. 1 (2014), pp. 173–378. 10.1561/2600000002.
  • S. Chaturantabut, C. Beattie, and S. Gugercin, Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM Journal on Scientific Computing. 38 (2016), pp. B837–B865. 10.1137/15M1055085.
  • R. Rashad, F. Califano, A. Schaft, and S. Stramigioli, Twenty years of distributed port-Hamiltonian systems: A literature review, IMA Journal of Mathematical Control and Information. 37 (2020), pp. 1400–1422. 10.1093/imamci/dnaa018.
  • H.J. Bungartz and M. Schäfer, Fluid-structure Interaction: Modelling, Simulation, Optimisation, Vol. 53, Berlin Heidelberg: Springer Science & Business Media, 2006.
  • T. Richter, Fluid-structure Interactions: Models, Analysis and Finite Elements, Vol. 118, Cham: Springer, 2017.
  • A. Brauchler, P. Ziegler, and P. Eberhard, An entirely reverse-engineered finite element model of a classical guitar in comparison with experimental data, The Journal of the Acoustical Society of America. 149 (2021), pp. 4450–4462. 10.1121/10.0005310.
  • O. Christensen, Quantitative models for low frequency guitar function, Journal of Guitar Acoustics. 6 (1982), pp. 10–25. http://scholar.google.com/scholar_lookup?hl=en.
  • E. Bécache, G. Derveaux, and P. Joly, An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation, Numerical Methods for Partial Differential Equations. 21 (2005), pp. 323–348. https://onlinelibrary.wiley.com/doi/abs/10.1002/num.20041.
  • A. Brauchler, P. Ziegler, and P. Eberhard, Examination of polarization coupling in a plucked musical instrument string via experiments and simulations, Acta Acustica. 4 (2020), pp. 9. 10.1051/aacus/2020008. paper no. 9 (12 pages).
  • M. Ducceschi and S. Bilbao, Linear stiff string vibrations in musical acoustics: Assessment and comparison of models, The Journal of the Acoustical Society of America. 140 (2016), pp. 2445–2454. 10.1121/1.4962553.
  • G. Derveaux, A. Chaigne, P. Joly, and E. Bécache, Time-domain simulation of a guitar: Model and method, The Journal of the Acoustical Society of America. 114 (2003), pp. 3368–3383. 10.1121/1.1629302.
  • E. Bécache, A. Chaigne, G. Derveaux, and P. Joly, Numerical simulation of a guitar, Computers & Structures. 83 (2005), pp. 107–126. 10.1016/j.compstruc.2004.04.018.
  • F. Silva, T. Hélie, and V. Wetzel, Port-Hamiltonian Representation of Dynamical Systems. Application to Self-Sustained Oscillations in the Vocal Apparatus, in 7th Int. Conf. on Nonlinear Vibrations, Localization and Energy Transfer, P. du Lma, ed., Vol. 160, Jun, Marseille, France. 2019, Available at https://hal.archives-ouvertes.fr/hal-03020400.
  • A. Falaize and T. Hélie, Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes piano, Journal of Sound and Vibration. 390 (2017), pp.289–309. https://www.sciencedirect.com/science/article/pii/S0022460X16306320.
  • M. Tchonkova and S. Sture, Classical and recent formulations for linear elasticity, Archives of Computational Methods in Engineering. 8 (2001), pp. 41–74. 10.1007/BF02736684.
  • D. Blackstock, Fundamentals of Physical Acoustics, Wiley, New York, 2000.
  • O.C. Zienkiewicz, R.L. Taylor, and D.D. Fox, The Finite Element Method for Solid and Structural Mechanics, 7th ed., Butterworth-Heinemann, Oxford, 2013.
  • A. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.
  • T. Wolf, B. Lohmann, R. Eid, and P. Kotyczka, Passivity and structure preserving order reduction of linear port-Hamiltonian systems using Krylov subspaces, European Journal of Control. 16 (2010), pp. 401–406. 10.3166/ejc.16.401-406.
  • H. Egger, O. Habrich, and V. Shashkov, On the energy stable approximation of Hamiltonian and gradient systems, Computational Methods in Applied Mathematics. 21 (2021), pp. 335–349. 10.1515/cmam-2020-0025.
  • P. Koutsovasilis and M. Beitelschmidt, Comparison of model reduction techniques for large mechanical systems, Multibody System Dynamics. 20 (2008), pp. 111–128. 10.1007/s11044-008-9116-4.
  • R. Freund, Model reduction methods based on Krylov subspaces, Acta Numerica. 12 (2003), pp. 267–319. http://journals.cambridge.org/action/displayAbstract?fromPage=onlineaid=165629fulltextType=RAfileId=S0962492902000120.
  • S. Volkwein, Proper orthogonal decomposition: Theory and reduced-order modelling, http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Book.pdf (2013).
  • L. Peng and K. Mohseni, Symplectic model reduction of Hamiltonian systems, SIAM Journal on Scientific Computing. 38 (2016), pp. A1–A27. 10.1137/140978922.
  • P. Buchfink, A. Bhatt, and B. Haasdonk, Symplectic model order reduction with non-orthonormal bases, Mathematical and Computational Applications. 24 (2019), pp.43. https://www.mdpi.com/2297-8747/24/2/43.
  • C. Beattie, S. Gugercin, and V. Mehrmann, Structure-preserving interpolatory model reduction for port-Hamiltonian differential-algebraic systems, in Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas, C. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, eds., Structured Dynamical Systems, Springer International Publishing, Cham, 2022, pp. 235–254. 10.1007/978-3-030-95157-3_13.
  • J.S. Hesthaven, C. Pagliantini, and N. Ripamonti, Structure-preserving model order reduction of Hamiltonian systems (2021). Available at https://arxiv.org/abs/2109.12367.
  • R. Altmann, V. Mehrmann, and B. Unger, Port-Hamiltonian formulations of poroelastic network models, Mathematical and Computer Modelling of Dynamical Systems. 27 (2021), pp. 429–452. 10.1080/13873954.2021.1975137.
  • J. Hesthaven and C. Pagliantini, Structure-preserving reduced basis methods for Poisson systems, Mathematics of Computation. 90 (2021), pp. 1701–1740. 10.1090/mcom/3618.
  • O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu, The Finite Element Method – Its Basis & Fundamentals, Butterworth-Heinemann, Oxford, 2005.
  • A. Tkachuk and M. Bischoff, Variational methods for selective mass scaling, Computational Mechanics. 52 (2013), pp. 563–570. 10.1007/s00466-013-0832-0.
  • A. Brauchler, D. Hose, P. Ziegler, M. Hanss, and P. Eberhard, Distinguishing geometrically identical instruments: Possibilistic identification of material parameters in a parametrically model order reduced finite element model of a classical guitar, Journal of Sound and Vibration. 535 (2022), pp.117071. https://www.sciencedirect.com/science/article/pii/S0022460X22002838.
  • D. Matignon and T. Hélie, A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems, European Journal of Control. 19 (2013), pp.486–494. https://www.sciencedirect.com/science/article/pii/S0947358013001672.
  • R. Lerch, G. Sessler, and D. Wolf, Technische Akustik - Grundlagen und Anwendungen, Springer Berlin Heidelberg, Wiesbaden, 2009.
  • C. Howard and B. Cazzolato, Acoustic Analyses Using Matlab and Ansys, Boca Raton, FL: Taylor & Francis Group, 2017.
  • A. van de Walle, F. Naets, E. Deckers, and W. Desmet, Stability-preserving model order reduction for time-domain simulation of vibro-acoustic FE models, International Journal for Numerical Methods in Engineering. 109 (2017), pp. 889–912. https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5323.
  • G. Everstine, A symmetric potential formulation for fluid-structure interaction, Journal of Sound and Vibration. 79 (1981), pp. 157–160. 10.1016/0022-460x(81).
  • Abaqus, Abaqus Theory Manual, Providence, RI: Abaqus, Inc, 2016.
  • V. Mehrmann and R. Morandin, Structure-preserving discretization for port-Hamiltonian descriptor systems, in 2019 IEEE 58th Conference on Decision and Control (CDC), Nice. 2019, pp. 6863–6868, Available at 10.1109/CDC40024.2019.9030180.
  • C. Beattie, V. Mehrmann, H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems, Mathematics of Control, Signals and Systems. 30 (2018). 10.1007/s00498-018-0223-3.
  • A. Ezcurra, M. Elejabarrieta, and C. Santamaría, Fluid–structure coupling in the guitar box: Numerical and experimental comparative study, Applied Acoustics. 66 (2005), pp.411–425. https://www.sciencedirect.com/science/article/pii/S0003682X04001240.
  • T. Breiten, R. Morandin, and P. Schulze, Error bounds for port-Hamiltonian model and controller reduction based on system balancing, Computers & Mathematics with Applications. 116 (2022), pp.100–115. https://www.sciencedirect.com/science/article/pii/S0898122121003102.
  • F.L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre, A Partitioned Finite Element Method for power-preserving Discretization of Open Systems of Conservation Laws, IMA Journal of Mathematical Control and Information. 38 (2020), pp. 493–533. 10.1093/imamci/dnaa038.
  • P. Kotyczka and L. Lefèvre, Discrete-time port-Hamiltonian systems: A definition based on symplectic integration, Systems & Control Letters. 133 (2019), pp.104530. https://www.sciencedirect.com/science/article/pii/S0167691119301409.
  • E. Celledoni and E.H. Høiseth, Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems, arXiv: Numerical Analysis (2017). https://arxiv.org/abs/1706.08621.
  • S. Aoues, D. Eberard, and W. Marquis-Favre, Canonical interconnection of discrete linear port-Hamiltonian systems, in 52nd IEEE Conference on Decision and Control, Firenze. 2013, pp. 3166–3171, 10.1109/CDC.2013.6760366.
  • J. Fehr, D. Grunert, P. Holzwarth, B. Fröhlich, N. Walker, and P. Eberhard, Morembs—a model order reduction package for elastic multibody systems and beyond, in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, W. Keiper, A. Milde, and S. Volkwein, eds., Springer International Publishing, Cham, 2018, pp. 141–166. 10.1007/978-3-319-75319-5_7.
  • A. Castagnotto, Optimal model reduction by tangential interpolation: H2 and Hinf perspectives, Dissertation, Technical University Munich, Munich (2018). http://mediatum.ub.tum.de/?id=1437106.
  • R. Pinnau, Model order reduction: Theory, research aspects and applications, in Model Order Reduction: Theory, Research Aspects and Applications, in Model Reduction via Proper Orthogonal Decomposition, W.H.A. Schilders, H.A. van der Vorst, and J. Rommes, eds., 1st, Vol. 13 Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 95–109. 10.1007/978-3-540-78841-6_5.
  • A.C.D. Silva, Lectures on Symplectic Geometry, Springer, Berlin, Heidelberg, 2008.
  • H. Xu, A numerical method for computing an SVD-like decomposition, SIAM J. Matrix Analysis Applications. 26 (2005), pp. 1058–1082. 10.1137/S0895479802410529.
  • L. Li, Y. Liu, F. Zhang, and Z. Sun, Several explanations on the theoretical formula of Helmholtz resonator, Advances in Engineering Software. 114 (2017), pp.361–371. https://www.sciencedirect.com/science/article/pii/S096599781730635X.
  • N. Fletcher and T. Rossing, The Physics of Musical Instruments, Springer Science & Business Media, New York, 1991.