Publication Cover
Spatial Cognition & Computation
An Interdisciplinary Journal
Volume 20, 2020 - Issue 3
213
Views
0
CrossRef citations to date
0
Altmetric
Review

Nearness as context-dependent expression: an integrative review of modeling, measurement and contextual properties

, , &

References

  • Allen, G. L. (1997). From knowledge to words to wayfinding: Issues in the production and comprehension of route directions. In S. C. Hirtle & A. U. Frank (Eds.), Spatial information theory A theoretical basis for GIS. COSIT 1997 (Vol. 1329, pp. 363–372). LNCS. Berlin, Heidelberg, New York.
  • Altman, D. (1994). Fuzzy set theoretic approaches for handling imprecision in spatial analysis. International Journal of Geographical Information Systems, 8(3), 271–289. doi:10.1080/02693799408902000
  • Ashley, A., & Carlson, L. A. (2007). Encoding direction when interpreting proximal terms. Language and Cognitive Processes, 22(7), 1021–1044. doi:10.1080/01690960701190298
  • Baird, J. C., Wagner, M., & Nomu, E. (1982). Impossible cognitive spaces. Geographical, 14(3), 204–216.
  • Barclay, M., & Galton, A. (2013). Selection of reference objects for locative expressions: The importance of knowledge and perception. In T. Tenbrink, J. Wiener, & C. Claramunt (Eds.), Representing space in cognition. Oxford: Oxford University Press.
  • Barouni, F., & Moulin, B. (2015). An intelligent spatial proximity system using neurofuzzy classifiers and contextual information. Geomatica, 69(3), 285–296. doi:10.5623/cig2015-303
  • Barsalou, L. W. (1985). Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 11(4), 629–654. doi:10.1037//0278-7393.11.1-4.629
  • Barwise, J., & Seligman, J. (1997). Information flow: The logic of distributed systems. Cambridge: Cambridge University Press.
  • Bateman, J. (2010a). Language and Space: A two-level semantic approach based on principles of ontological engineering. International Journal of Speech Technology, 13(1), 29–48. doi:10.1007/s10772-010-9069-x
  • Bateman, J. (2010b). Situating spatial language and the role of ontology: Issues and outlook. Language and Linguistics Compass, 4(8), 639–664. doi:10.1111/j.1749-818X.2010.00226.x
  • Bateman, J., Hois, J., Ross, R., & Tenbrink, T. (2010). A linguistic ontology of space for natural language processing. Artificial Intelligence, 174(14), 1027–1071. doi:10.1016/j.artint.2010.05.008
  • Bateman, J., Tenbrink, T., & Farrar, S. (2007). The role of conceptual and linguistic ontologies in interpreting spatial discourse. Discourse Processes, 44(3), 175–212. doi:10.1080/01638530701600912
  • Bazire, M., Bazire, M., Brézillon, P., & Brézillon, P. (2005). Understanding context before using it. In A. Dey, B. Kokinov, D. Leake, & R. Turner (Eds.), Modeling and using context. CONTEXT 2005 (Vol. 3554, pp. 29–40). LNCS. Berlin, Heidelberg: Springer-Verlag.
  • Bera, R., & Claramunt, C. (2003). Topology-based proximities in spatial systems. Journal of Geographical Systems, 5(4), 353–379. doi:10.1007/s10109-003-0115-y
  • Brennan, J., & Martin, E. (2002). Foundations for a formalism of nearness. In R. I. McKay & J. Slaney (Eds.), AI 2002: Advances in artificial intelligence. AI 2002 (Vol. 2557, pp. 71–82). LNCS. Berlin, Heidelberg: Springer.
  • Brennan, J., Martin, E., & Mihye, K. (2004). Developing an ontology of spatial relations. In J. S. Gero, B. Tversky, & T. Knight (Eds.), Visual and spatial reasoning in design III (pp. 163–182). Sidney, Australia: Key Centre of Design Computing and Cognition, University of Sydney.
  • Brennan, J., & Martin, E. (2006). Membership functions for spatial proximity. In A. Sattar & B. Kang (Eds.), AI 2006: Advances in artificial intelligence (Vol. 4304, pp. 942–949). Lecture Notes in Artificial Intelligence. Springer.
  • Brennan, J. (2009). A framework for modelling spatial proximity [PhD Thesis]. University of New South Wales.
  • Brennan, J., & Martin, E. (2012). Spatial proximity is more than just a distance measure. International Journal of Human-Computer Studies, 70(1), 88–106. doi:10.1016/j.ijhcs.2011.08.006
  • Briggs, R. (1973). Urban cognitive distance. In R. M. Downs & D. Stea (Eds.), Image and environment (pp. 361–388). Chicago, IL: Aldine.
  • Brooks, C. M., Kaufmann, P. J., & Lichtenstein, D. R. (2008). Trip chaining behavior in multi- destination shopping trips: A field experiment and laboratory replication. Journal of Retailing, 84(1), 29–38. doi:10.1016/j.jretai.2008.01.009
  • Burigo, M., & Coventry, K. R. (2010). Context affects scale selection for proximity terms. Spatial Cognition & Computation, 10(4), 292–312. doi:10.1080/13875861003797719
  • Burigo, M., Coventry, K. R., & Cangelosi, A. (2016). Spatial language and converseness. Quarterly Journal of Experimental Psychology, 11, 1–19.
  • Byrne, R. W. (1979). Memory for urban geography. Quarterly Journal of Experimental Psychology, 31(1), 147–154. doi:10.1080/14640747908400714
  • Cai, G., Wang, H., & MacEachren, A. M. (2003). Communicating vague spatial concepts in human-GIS interactions: A collaborative dialogue approach. In W. Kuhn, M. F. Worboys, & S. Timpf (Eds.), Spatial information theory. foundations of geographic information science. COSIT 2003 (Vol. 2825, pp. 287–300). LNCS. Berlin, Heidelberg: Springer.
  • Cai, G. (2007). Contextualization of geospatial database semantics for human–GIS interaction. GeoInformatica, 11(2), 217–237. doi:10.1007/s10707-006-0001-0
  • Cai, G. (2009). Modelling contextual knowledge for adaptive geographic visualization. In H. Lin & M. Batty (Eds.), Virtual geographic environment (pp. 151–163). Beijing, China: Science Press.
  • Cai, G., Wang, H., MacEachren, A. M., & Fuhrmann, S. (2005). Natural conversational interfaces to geospatial databases. Transactions in GIS, 9(2), 199–221. doi:10.1111/j.1467-9671.2005.00213.x
  • Canneyt, S. V., Crommenlaan, G., Schockaert, S., Laere, O. V., & Dhoedt, B. (2012). Using social media to find places of interest: A case study. Proceedings of the 1st ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information, ACM.
  • Carbon, C.C. (2007). Autobahn people: Distance estimations between german cities biased by social factors and the. In T. Barkowsky, M. Knauff, G. Ligozat, & D. R. Montello (Eds.), Spatial cognition V: Reasoning, action, interaction (Vol. 4387, pp. 489–500). LNCS. Berlin, Heidelberg: Springer.
  • Carbon, C.C., & Leder, H. (2005). The wall inside the brain: Overestimation of distances crossing the former iron curtain. Psychonomic Bulletin & Review, 12(4), 746–750. doi:10.3758/BF03196767
  • Carlson, L. A., & Covey, E. S. (2005). How far is “near”? Inferring distance from spatial descriptions. Language and Cognitive Processes, 20(5), 617–631. doi:10.1080/01690960400023501
  • Carlson, L. A., & Kenny, R. (2006). Interpreting spatial terms involves simulating interactions. Psychonomic Bulletin & Review, 13(4), 682–688. doi:10.3758/BF03193981
  • Carlson, L. A., & Logan, G. D. (2001). Using spatial terms to select an object. Memory & Cognition, 29(6), 883–892. doi:10.3758/BF03196417
  • Carlson, L. A., & Van Deman, S. R. (2004). The space in spatial language. Journal of Memory and Language, 51(3), 418–436. doi:10.1016/j.jml.2004.06.004
  • Cohn, A. G., & Renz, J. (2008). Qualitative spatial representation and reasoning. In F. van Harmelen, V. Lifschitz, & B. Porter (Eds.), Handbook of knowledge representation Chap. 13. (pp. 551–596). Amsterdam, Oxford: Elsevier B.V.
  • Costello, F. J., & Kelleher, J. D. (2006). Spatial prepositions in context: The semantics of near in the presence of distractor objects. Third ACL-SIGSEM Workshop on Prepositions. Preposition’06.
  • Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. doi:10.1016/S0272-4944(87)80020-8
  • Coventry, K. R. (2013). On the mapping between spatial language and the vision and action systems. In Y. Coello & A. Bartolo (Eds.), Language and action in cognitive neuroscience cognitive neuroscience Chap. Chapter 11. (pp. 209–225). East Sussex, UK: Psychology Press.
  • Coventry, K. R., & Garrod, S. C. (2004). Saying, seeing, and acting: The psychological semantics of spatial prepositions. In Essays in cognitive psychology. Hove, UK: Psychology Press.
  • Crangle, C., & Suppes, P. (1989). Geometrical semantics for spatial prepositions. Midwest Studies in Philosophy, 14(1), 399–422. doi:10.1111/j.1475-4975.1989.tb00200.x
  • Crangle, C., & Suppes, P. (1994). Language and learning for robots. Stanford, CA: CSLI Publications.
  • Dale, R., & Reiter, E. (1995). The role of the gricean maxims in the generation of referring expressions. Cognitive Science, 18(2), 233–263. doi:10.1207/s15516709cog1902_3
  • Dao, T. H. D., & Thill, J. C. (2009). Contextualized space-time accessibility modeling and measurements with NeuroFuzzy proximity relations. Proceedings of the International Conference on Advanced Geographic Information Systems and Web Services. GEOWS 2009 (pp. 158–164). IEEE Computer Society.
  • Dehane, S. (1997). The number sense: How the mind creates mathematics. Oxford, New York: Oxford University Press.
  • Delboni, T. M., Borges, K. A. V., Laender, A. H. F., & Jr, C. A. D. (2007). Semantic expansion of geographic web queries based on natural language positioning expressions. Transactions in GIS, 11(3), 377–397. doi:10.1111/j.1467-9671.2007.01051.x
  • Denofsky, M. E. (1976). How near is near? a near specialist. AI Memo No. 344. Cambridge: Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
  • Derungs, C., & Purves, R. S. (2016). Mining nearness relations from an n-grams web corpus in geographical space. Spatial Cognition & Computation, 16(4), 301–322. doi:10.1080/13875868.2016.1246553
  • Dey, A. K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7. doi:10.1007/s007790170019
  • Dolbear, C., Hart, G., & Goodwin, J. (2007). From theory to query: Using ontologies to make explicit imprecise spatial relationships for database querying. Conference on Spatial Information Theory (COSIT 2007).
  • Downs, R. M., & Stea, D. (1973). Cognitive maps and spatial behaviour: Process and products. In R. M. Downs & D. Stea (Eds.), Image and environment: Cognitive mapping and spatial behavior. New Brunswick, Canada: Aldine Transactions.
  • Egenhofer, M. J., & Mark, D. M. (1995). Naive geography. In Spatial information theory A theoretical basis for GIS. COSIT 1995 September (Vol. 988, pp. 1–15). LNCS.
  • Ekman, G., & Bratfisch, O. (1965). Subjective distance and emotional involvement. A psychological mechanism. Acta psychologica, 24(5), 430–437. doi:10.1016/0001-6918(65)90027-2
  • Ferenz, K. (2000). The role of nongeometric information in spatial language [Unpublished doctoral dissertation]. Dartmouth College, Hanover, NH.
  • Fisher, P. (2000). Sorites paradox and vague geographies. Fuzzy Sets and Systems, 113(1), 7–18. doi:10.1016/S0165-0114(99)00009-3
  • Fisher, P. F., & Orf, T. M. (1991). An investigation of the meaning of near and close on a university campus. Comput. Envrion. And Urban Systems, 15(1–2), 23–35. doi:10.1016/0198-9715(91)90043-D
  • Flushing, E. F., Gambardella, L. M., & Di Caro, G. A. (2013). Strategic control of proximity relationships in heterogeneous search and rescue teams. Proceedings of the 3rd IROS Workshop on Robots and Sensors integration in future rescue INformation system. ROSIN, Tokyo.
  • Frank, A. U. (1992). Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages & Computing, 3(4), 343–371. doi:10.1016/1045-926X(92)90007-9
  • Frank, A. U. (1996). Qualitative spatial reasoning: Cardinal directions as an example. International Journal of Geographical Information Systems, 10(3), 269–290. doi:10.1080/02693799608902079
  • Frank, A. U. (2006). Twenty years of reasoning with spatial relations. In P. Fischer (Ed.), Classics from IJGIS: Twenty years of the international journal of geographical information science and systems (pp. 353–361). CRC Press.
  • Freundschuh, S. M. (1998). Cognitive distance at various geographic scales. In M. J. Egenhofer & R. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 212–234). Oxford: Oxford University Press.
  • Gahegan, M. (1995). Proximity operators for qualitative spatial reasoning. In A. U. Frank & W. Kuhn (Eds.), Spatial information theory A theoretical basis for GIS. COSIT 1995 (Vol. 4128, pp. 31–44). LNCS. Berlin, Heidelberg: Springer.
  • Galton, A. (2009). Spatial and temporal knowledge representation. Earth Science Informatics, 2(3), 169–187. doi:10.1007/s12145-009-0027-6
  • Gapp, K.-P. (1995). Object localization: Selection of optimal reference objects. In A. U. Frank & W. Kuhn (Eds.), Spatial information theory - A theoretical basis for GIS. Berlin, Heidelberg, New York: Springer.
  • Golledge, R. G., & Zannaras, G. (1973). Cognitive approaches to the analysis of human spatial behaviour. In W. Ittelton (Ed.), Environmental cognition (pp. 59–94). New York, NY: Academic Press.
  • Grice, H. (1975). Logic and conversation. In Speech acts (Vol. 3, pp. 43–58). Syntax and Semantics. New York, NY: Academic Press.
  • Grütter, R., Helming, I., Speich, S., & Bernstein, A. (2011). Rewriting queries for web searches that use local expressions. 5th International Symposium on Rules. RuleML 2011 (pp. 345–359). Barcelona.
  • Grütter, R., Scharrenbach, T., & Waldvogel, B. (2010). Vague spatio-thematic query processing: A qualitative approach to spatial closeness. Transactions in GIS, 14(2), 97–109. doi:10.1111/j.1467-9671.2010.01185.x
  • Gryl, A., Moulin, B., Kettani, D., Gryll, A., Moulin, B., & Kettani, D. (2002). A conceptual model for representing verbal expressions used in route descriptions. In Spatial language (pp. 19–42).
  • Guesgen, H. W. (2002). Reasoning about distance based on fuzzy sets. Applied Intelligence, 17(3), 265–270. doi:10.1023/A:1020087332413
  • Guesgen, H. W., & Albrecht, J. A. (2000). Imprecise reasoning in geographic information systems. Fuzzy Sets and Systems, 113(1), 121–131. doi:10.1016/S0165-0114(99)00016-0
  • Gurevych, I., Porzel, R., & Malaka, R. (2006). In context: Integrating domain- and situation- specific knowledge. In W. Wahlster (Ed.), SmartKom - foundations of multimodal dialogue systems (pp. 269–284). Berlin, Heidelberg: Springer.
  • Hahn, J., Fogliaroni, P., Frank, A. U., & Navratil, G. (2016). A computational model for context and spatial concepts. In T. Sarjakoski, Y. S. Maribel, & L. T. Sarjakoski (Eds.), Geospatial Data in a Changing World: Selected Papers of the 19th AGILE Conference on Geographic Information Science (pp. 3–19). Lecture Notes in Geoinformation and Cartography. Springer.
  • Hall, M. M., & Jones, C. B. (2012). Cultural and language influences on the interpretation of spatial prepositions. In GI_Forum 2012: Geovisualization, society & learning. Berlin/Offenbach.
  • Hand, D. J. (1996). Statistics and the theory of measurement. Journal of the Royal Statistical Society, Series A(159), 445–492. doi:10.2307/2983326
  • Hart, G., & Dolbear, C. (2013). Linked data: A geographic perspective. Boca Raton, FL: CRC Press.
  • Hawes, N., Klenk, M., Lockwood, K., Horn, G. S., & Kelleher, J. D. (2012). Towards a cognitive system that can recognize spatial regions based on context. Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (pp. 200–206). AAAI Publications.
  • Heath, T., & Goodwin, J. (2011). linking government data for government and consumer applications. In D. Wood (Ed.), Linking government data (pp. 73–92). New York, NY: Springer New York.
  • Hedblom, M. M., Kutz, O., & Neuhaus, F. (2015). Image schemas as families of theories. Proceedings of the 4th International Workshop, C3GI (pp. 19–33). Istanbul.
  • Helming, I., Bernstein, A., Grütter, R., & Vock, S. (2011). Making close to suitable for web search a comparison of two approaches.Iin Proceedings of the Terra Cognita Workshop on Foundations, Technologies and Applications of the Geospatial Web, In conjunction with the International Semantic Web Conference (ISWC2011), Bonn.
  • Hérnandez, D. (1994). Qualitative representation of spatial knowledge. Berlin, Heidelberg, New York: Springer-Verlag Heidelberg.
  • Hernández, D., Clementini, E., & Di Felice, P. (1995). Qualitative distances. In Spatial information theory a theoretical basis for GIS. COSIT 1995 (Vol. 988, pp. 45–57). LNCS. Berlin, Heidelberg: Springer.
  • Herskovits, A. (1986). Language and spatial cognition: An interdisciplinary study of the prepositions in English. In Studies in natural language processing. Cambridge: Cambridge University Press.
  • Hirtle, S. C., & Jonides, J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 3(13), 208–217. doi:10.3758/BF03197683
  • Hourihan, K. J., & Jones, L. E. (1979). Distance estimation and cognitive mapping: A multidimensional scaling analysis. The Irish Journal of Psychology, 4(2), 79–94. doi:10.1080/03033910.1979.10557638
  • Hubbard, R. (1978). A review of selected factors conditioning consumer travel behavior. Journal of Consumer Research, 5(1), 1. doi:10.1086/208709
  • Hund, A. M., & Plumert, J. M. (2007). What counts as by? Young children’s use of relative distance to judge nearbyness. Developmental Psychology, 43(1), 121–133. doi:10.1037/0012-1649.43.1.121
  • Huriot, J.-M., Smith, T. E., & Thisse, J.-F. (1989). Minimum-cost distances in spatial analysis. Geographical Analysis, 21(4), 294–315. doi:10.1111/j.1538-4632.1989.tb00898.x
  • Ingene, C. A., & Ghosh, A. (1990). Consumer and produced behaviour in a multiprpose shopping environment. Geographical Analysis, 22(1), 70–93. doi:10.1111/j.1538-4632.1990.tb00197.x
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. doi:10.1016/j.cogpsych.2005.08.003
  • Johnson, M. (1987). The body in the mind. Chicago, London: The University of Chicago Press.
  • Kelleher, J. D., & Kruijff, G.-J. M. (2005). A context-dependent algorithm for generating locative expressions in physically situated environments. In G. Wilcock, K. Jokinen, C. Mellish, & E. Reiter (Eds.), Proceedings of the 10th European Workshop on Natural Language Generation. ENLG (pp. 68–74). Aberdeen.
  • Kelleher, J. D., & Costello, F. J. (2009). Applying computational models of spatial prepositions to visually situated dialog. Computational Linguistics, 35(2), 271–306. doi:10.1162/coli.06-78-prep14
  • Kelleher, J. D., Kruijff, G.-J. M., & Costello, F. J. (2006). Proximity in context: An empirically grounded computational model of proximity for processing topological spatial expressions. Proceedings of the 21st International Conference on Compuational Linguistics and 44th Annual Meeting of the ACL (pp. 745–752). Association for Computational Linguistics.
  • Kemmerer, D. (1999). ‘Near’ and ‘far’ in language and perception. Cognition, 73(1), 35–63. doi:10.1016/S0010-0277(99)00040-2
  • Kettani, D., Moulin,B. (1999). A spatial model based on the notions of spatial conceptual map and of object’s influence areas. In C. Freska & D. M. Mark (Eds.), COSIT’99 (Vol. 988, pp. 401–416). LNCS. Berlin, Heidelberg: Springer.
  • Khan, A., Vasardani, M., & Winter, S. (2013). Extracting spatial information from place descriptions. Proceedings of The First ACM SIGSPATIAL International Workshop on Computational Models of Place (COMP 2013) (pp. 62–69). New York.
  • Kienast, F., Degenhardt, B., Weilenmann, B., Wäger, Y., & Buchecker, M. (2012). GIS-assisted mapping of landscape suitability for nearby recreation. Landscape and Urban Planning, 105(4), 385–399. doi:10.1016/j.landurbplan.2012.01.015
  • Kracht, M. (2008). Language and Space. Los Angeles, CA: Department of Linguistics, UCLA.
  • Kruijff, G.-J. M., Lison, P., Benjamin, T., Jacobsson, H., & Hawes, N. A. (2007). Incremental, multi-level processing for comprehending situated dialogue in human-robot interaction. In L. Lopes, T. Belpaeme, & S. Cowley (Eds.), Symposium on Language and Robots. LangRo 2007 (pp. 1–36). Aveiro.
  • Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2(2), 129–153. doi:10.1207/s15516709cog0202_3
  • Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119(1), 191–233. doi:10.1016/S0004-3702(00)00017-5
  • Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago, IL: The University of Chicago Press.
  • LeBoeuf, R., & Shafir, E. (2009). Anchoring on the “here” and “now” in time and distance judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 81–93. doi:10.1037/a0013665
  • Lee, T. (1970). Perceived distance as a function of direction in the city. Environment and Behavior, 2(1), 40–51. doi:10.1177/001391657000200103
  • Levinson, S. C. (1996). Language and space. Annual Review of Anthropology, 25(1), 353–382. doi:10.1146/annurev.anthro.25.1.353
  • Levinson, S. C. (2000). Presumptive meanings: The theory of generalized conversational implicature. Cambridge, MA: The MIT Press.
  • Liu, Y., Guo, Q. H., Wieczorek, J., & Goodchild, M. F. (2009). Positioning localities based on spatial assertions. International Journal of Geographical Information Science, 23(11), 1471–1501. doi:10.1080/13658810802247114
  • Lloyd, R., & Heivlyt, C. (1987). Systematic distortions in urban cognitive maps. Annals of the Association of American Geographers, 77(2), 191–207. doi:10.1111/j.1467-8306.1987.tb00153.x
  • Logan, G. D., & Sadler, D. D. (1996). A computational analysis of the apprehension of spatial relations. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space Chap. 13. (pp. 493–529). Cambridge, MA, USA: The MIT Press.
  • Lu, B., Charlton, M., Harris, P., & Stewart, A. (2014). Geographically weighted regression with a non-euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science, 28(4), 660–681. doi:10.1080/13658816.2013.865739
  • Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometria, 24(2), 178–191. doi:10.2307/1905751
  • Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1990). Foundations of measurement volume III: Representation, axiomatization, and invariance. San Diego, London: Academic Press.
  • Lundberg, U., & Ekman, G. (1973). Subjective geographic distance: A multidimensional comparison. Psychometrika, 38(1973), 113–122. doi:10.1007/BF02291179
  • Lynch, K. (1960). The image of the city. Cambridge, MA: MIT Press.
  • Ma, Y., Kalashnikov, D. V., & Mehrotra, S. (2008). Towards managing uncertain spatial informaiton for situational awareness applications. IEE Transactions on Knowledge and Data Engineering, 20, 10.
  • MacEachren, A. M. (1980). Travel time as the basis of cognitive distance. The Professional Geographer, 32(1), 30–36. doi:10.1111/j.0033-0124.1980.00030.x
  • Mainwaring, S. D., Tversky, B., Ohgishi, M., & Schiano, D. J. (2003). Descriptions of simple spatial scenes in English and Japanese. Spatial Cognition & Computation Computation, 3(1), 3–42. doi:10.1207/S15427633SCC0301_2
  • Maki, R. H. (1981). Categorization and distance effects with spatial linear orders. Journal of Experimental Psychology, 7(1), 15–22.
  • Mark, D. M., Turk, A. G., & Stea, D. (2007). Progress on yindjibarndi ethnophysiography. In S. Winter, M. Duckham, L. Kulik, & B. Kuipers (Eds.), Spatial information theory. COSIT 2007 (Vol. 4736, pp. 1–19). LNCS. Berlin Heidelberg: Springer.
  • Mark, D. M., & Egenhofer, M. J. (1994). Modeling spatial relations between lines and regions: Combining formal mathematical models and human subjects testing. Cartography and Geographic Information Systems, 21(4), 195–212.
  • Marquet, O., & Miralles-Guasch, C. (2014). The Walkable city and the importance of the proximity environments for Barcelona’s everyday mobility. Cities, 42, 258–266. doi:10.1016/j.cities.2014.10.012
  • McNamara, T. P. (1986). Mental Representations of Spatial Relations. Cognitive Psychology, 18(1), 87–121. doi:10.1016/0010-0285(86)90016-2
  • McNamara, T. P., & Diwadkar, V. A. (1997). Symmetry and asymmetry of human spatial memory. Cognitive Psychology, 34(2), 160–190. doi:10.1006/cogp.1997.0669
  • McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(2), 211–227. doi:10.1037//0278-7393.15.2.211
  • McNamara, T. P., Rump, B., & Werner, S. (2003). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review, 10(3), 589–595. doi:10.3758/BF03196519
  • Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception. Cambridge University Press.
  • Miller, H. J., & Wentz, E. A. (2003). Representation and spatial analysis in geographic information systems. Annals of the Association of American Geographers, 93(3), 574–594. doi:10.1111/1467-8306.9303004
  • Minock, M., & Mollevik, J. (2013). Context-dependent near and far in spatial databases via supervaluation. Data & Knowledge Engineering, 86(270019), 295–305. doi:10.1016/j.datak.2013.02.004
  • Montello, D. R. (1991). The measurement of cognitive distance: Methods and construct validity. Journal of Environmental Psychology, 11(2), 101–122. doi:10.1016/S0272-4944(05)80071-4
  • Montello, D. R. (1993). Scale and multiple psychologies of space daniel. In A. U. Frank & I. Campari (Eds.), Spatial information theory: A theoretical basis for GIS. COSIT 1993 (Vol. 716, pp. 312–321). LNCS. Berlin, Heidelberg: Springer.
  • Montello, D. R. (1997). The perception and cognition of environmental distance: direct sources of information. In S. Hirtle & A. U. Frank (Eds.), Spatial information theory A theoretical basis for GIS. COSIT 1997 (Vol. 1329, pp. 297–311). LNCS. Berlin: Springer.
  • Morrow, D. G., & Clark, H. H. (1988). Interpreting words in spatial descriptions. Language and Cognitive Processes, 3(4), 275–291. doi:10.1080/01690968808402091
  • Nam, S. (1995). The semantics of locative prepositional phrases in English [PhD-Thesis]. University of California, Los Angeles.
  • Nasar, J. L., Valencia, H., Omar, Z. A., Chueh, S.-C., & Hwang, J.-H. (1985). Out of sight further from mind: Destination visibility and distance perception. Environment & Behavior, 17(5), 627–639. doi:10.1177/0013916585175004
  • O’Keefe, J. (1996). The spatial prepositions in English, vector grammar, and the cognitive map theory. In P. Bloom, M. A. Peterson, L. Nadel, & F. Merill Garrett (Eds.), Langauge and Space. Cambridge, MA: MIT Press.
  • Özçep, Ö. L., Grütter, R., & Möller, R. (2012a). Dynamics of a nearness relation — first results. In M. Bhatt, H. W. Guesgen, & E. Davis (Eds.) Proceedings of the International Workshop on Spatio-Temporal Dynamics (STeDy 2012)
  • Özçep, Ö. L., Grütter, R., & Möller, R. (2012b). Nearness rules and scaled proximity. In L. D. Raedt, C. Bessiere, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, & P. Lucas (Eds.), ECAI 2012, 20th European Conference on Artificial Intelligence (pp. 636–641). Frontiers in Artificial Intelligence and Applications. Amsterdam, Berlin, Oxford, Tokyo, Washington, D.C: IOS Press.
  • Pareti, P., & Klein, E. (2011). Learning vague concepts for the semantic web. Proceedings of the Joint Workshop on Knowledge Evolution and Ontology Dynamics. In Conjunction with ISWC 2011. CEUR workshop proceedings (Vol. 784).
  • Pustejovsky, J., Moszkowicz, J., & Verhagen, M. (2012). A linguistically grounded annotation language for spatial information. TAL Traitement Automatique des Langues, 53(2), 87–113.
  • Qi, C., Shu, H., & Xu, A. (2006). Formal properties of cognitive distance in geographical space. Proceedings of the 16th International Conference on Artificial Reality and Telexistence– Workshops (ICAT’06).
  • Radvansky, G., Carlson-Radvansky, L., & Irwin, D. (1995). Uncertainty in estimating distances from memory. Memory & Cognition, 23(5), 596–606. doi:10.3758/BF03197261
  • Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. In 3rd int. conf. on knowledge representation and reasoning (Vol. 92, pp. 165–176). Morgan Kaufmann.
  • Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130(2), 273–298. doi:10.1037/0096-3445.130.2.273
  • Richter, D., Winter, S., Richter, K.-F., & Stirling, L. (2013). Granularity of locations referred to by place descriptions. Computers, Environment and Urban Systems, 41, 88–99. doi:10.1016/j.compenvurbsys.2013.03.005
  • Roberts, F. S. (1973). Tolerance Geometry. Notre Dame Journal of Formal Logic, 14(1), 68–76. doi:10.1305/ndjfl/1093890809
  • Robinson, V. B. (2003). A perspective on the fundamentals of fuzzy sets and their use in geographic information systems. Transactions in GIS, 7(1), 3–30. doi:10.1111/1467-9671.00127
  • Rodríguez, M. A., & Egenhofer, M. J. (2004). Comparing geospatial entity classes: An asymmetric and context-dependent similarity measure. International Journal of Geographical Information Science, 18(3), 229–256. doi:10.1080/13658810310001629592
  • Roller, S., Speriosu, M., Rallapalli, S., Wing, B., & Baldridge, J. (2012). Supervised text-based geolocation using language models on an adaptive grid. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics.
  • Sadalla, E. K., Burroughs, J. W., & Staplin, L. J. (1980). Reference points in spatial cognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 6(5), 516–528.
  • Sanderson, M., & Kohler, J. (2004). Analyzing geographic queries. SIGIR Workshop on Geographic Information Retrieval (Vol. 2).
  • Schockaert, S., De Cock, M., & Kerre, E. E. (2008). Location approximation for local search services using natural language hints. International Journal of Geographical Information Science, 22(3), 315–336. doi:10.1080/13658810701626277
  • Schwering, A., & Raubal, M. (2005). Spatial Relations for Semantic Similarity Measurement. In J. Akoka, et al. (eds), Perspectives in Conceptual Modeling (vol 3770). Berlin, Heidelberg: Springer. Retrieved from https://doi.org/10.1007/11568346_28
  • Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. doi:10.1002/j.1538-7305.1948.tb01338.x
  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: The University of Illinois Press.
  • Sharma, J., Flewelling, D., & Egenhofer, M. J. (1994). A qualitative spatial reasoner. In T. C. Waugh & R. G. Healey (Eds.), Proceedings of the Sixth International Symposium on Spatial Data Handling (pp. 665–681). London: Taylor & Francis.
  • Skoumas, G., Pfoser, D., & Kyrillidis, A. (2013). On quantifying qualitative geospatial data: A probabilistic approach. Proceedings of the Second ACM International Workshop on Crowd- sourced and Volunteered Geographic Information (pp. 71–78).
  • Skoumas, G., Pfoser, D., & Kyrillidis, A. (2014). Location estimation using crowdsourced geospatial narratives. arXiv, 1408.5894.
  • Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10(4), 422–437. doi:10.1016/0010-0285(78)90006-3
  • Stevens, S. S., & Galanter, E. H. (1957). Ratio scales and category scales for a dozen perceptual continua. Journal of Experimental Psychology, 54(6), 377–411. doi:10.1037/h0043680
  • Strzalecki, A. (1978). The relation between subjective distance and emotional involvement: Further experiment. Acta Psychologica, 42(5), 429–440. doi:10.1016/0001-6918(78)90025-2
  • Suppes, P. (1991). The principie of invariance with special reference to perception. In J. Doignon & J. Falmagne (Eds.), Mathematical psychology: Current Development (pp. 35–53). New York: Springer-Verlag.
  • Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (1989). Foundations of measurement volume II: Geometrical, threshold, and probabilistic representations. San Diego, CA: Academic Press.
  • Talmy, L. (2000). How language structures space. In Toward a cognitive semantics Chap. 3. (Vol. 1, pp. 177–254). Cambridge, MA: MIT Press.
  • Tamminen, S., Oulasvirta, A., Toiskallio, K., & Kankainen, A. (2004). Understanding mobile contexts. Personal and Ubiquitous Computing, 8(2), 135–143. doi:10.1007/s00779-004-0263-1
  • Taylor, H. A., & Tversky, B. (1996). Perspective in spatial descriptions. Journal of Memory and Language, 35(3), 371–391. doi:10.1006/jmla.1996.0021
  • Tezuka, T., Kambayashi, Y., & Takakura, H. (2001). Web-based inference rules for processing conceptual geographical relationships. Proceedings of the 2nd Int. Conf. on Web Information Systems Engineering, The 1st Int. Workshop on Web Geographical Information Systems (Vol. 2, pp. 14–21).
  • Tezuka, T., Takakura, H., Lee, R., & Kambayashi, Y. (2001). Models for conceptual geographical prepositions based on web resource. Journal of Geographic Information and Decision Analysis, 5(2), 83–94.
  • Thorndyke, P. W. (1981). Distance estimation from cognitive maps. Cognitive Psychology, 13(4), 526–550. doi:10.1016/0010-0285(81)90019-0
  • Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic Geography, 46, 234–240. doi:10.2307/143141
  • Turney, P. D. (1996a). The identification of context-sensitive features: A formal definition of context for concept learning. 13th International Conference on Machine Learning (ICML96), Workshop on Learning in Context-Sensitive Domains (pp. 53–59). Bari.
  • Turney, P. D. (1996b). The management of context-sensitive features: A review of strategies. 13th International Conference on Machine Learning (ICML96), Workshop on Learning in Context-Sensitive Domains (pp. 60–66). Bari, Italy.
  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science (New York, N.Y.), 185(4157), 1124–1131. doi:10.1126/science.185.4157.1124
  • Tversky, B. (1992). Distortions in Cognitive Maps. Geoforum, 23(2), 131–138. doi:10.1016/0016-7185(92)90011-R
  • Tversky, B., Taylor, H. A., & Mainwaring, S. (1997). Langage et perspective spatiale. In M. Denis (Ed.), Langage et cognition spatiale (pp. 25–50). Science Cognitives. Paris: Masson.
  • Tversky, B. (2000). Levels and structure of spatial knowledge. In S. Freundschuh & R. Kitchin (Eds.), Cognitive mapping: Past, present, and future Chapter 3. (pp. 24–44). Frontiers of Cognitive Science. London, New York: Routledge.
  • Tversky, B. (2003). Structures of mental spaces: How people think about space. Environment & Behavior, 35(1), 66–80. doi:10.1177/0013916502238865
  • van Benthem, J. F. A. K. (1991). The logic of time: A model-theoretic investigation into the varieties of temporal ontology and temporal discourse.(Second Edi). Springer.
  • van der Zee, E., Adams, K., & Niemi, J. (2009). The influence of geometrical and nongeometrical features on the use of the lexical concepts NEAR and FAR in English and Finnish. Spatial Cognition and Computation, 9(4), 305–317. doi:10.1080/13875860903219212
  • van Rooij, R. (2011). Vagueness, tolerance and non-transitive entailment. In P. Cintula, C. Fermüller, L. Godo, & P. Hajek (Eds.), Understanding vagueness - logical, philosophical and linguistic perspectives (Vol. 36, pp. 205–221). Studies in Logic. London: College Publications.
  • Vandeloise, C. (1991). Spatial prepositions: A case study from French. Chicago, IL: The University of Chicago Press.
  • Vasardani, M., Winter, S., & Richter, K.-F. (2013). Locating place names from place descriptions. International Journal of Geographical Information Science, 27(12), 2509–2532. doi:10.1080/13658816.2013.785550
  • Vieu, L. (1991). Sémantique des relations spatiales et inférences spatio-temporelles: Une contribution à l’étude des structures formelles de l’espace en Langage Naturel [Doctoral dissertation]. Université Paul Sabatier.
  • Wagner, M. (1985). The metric of visual space. Perception & Psychophysics, 38(6), 483–495. doi:10.3758/BF03207058
  • Wagner, M. (2006). The geometries of visual space. New Jersey, NJ: Lawrence Erlbaum Associates.
  • Wallgrün, J. O., Klippel, A., & Baldwin, T. (2014). Building a corpus of spatial relational expressions extracted from web documents. SIGSPATIAL ’14. Dallas/Fort Worth, TX: ACM.
  • Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. doi:10.1111/j.1365-2648.2005.03621.x
  • Worboys, M. F. (1996). Metrics and topologies for geographic space. Advances in Geographic Information Systems Research II: Proceedings of the International Symposium on Spatial Data Handling (Vol. 7), Delft, Netherlands.
  • Worboys, M. F. (2001). Nearness relations in environmental space. International Journal of Geographical Information Science, 15(7), 633–651. doi:10.1080/13658810110061162
  • Worboys, M. F. (2003). Communicating geographic information in context. In M. Duckham, M. F. Goodchild, & M. F. Worboys (Eds.), Foundations of geographic information science (pp. 33–45). London, New York: Taylor & Francis.
  • Xiao, D., & Liu, Y. (2007). Study of cultural impacts on location judgments in Eastern China. Spatial Information Theory, 4736, 20–31.
  • Xu, S., & Klippel, A. (2012). Developing nearness models from geocoding spatial entities in a news corpus. In giscience.org (pp. 1–4).
  • Xu, S., & Klippel, A. (2013). Linking context and proximity through web corpus. Proceedings of the 7th Workshop on Geographic Information Retrieval - GIR ’13 (pp. 45–46). New York, NY: ACM Press.
  • Yao, X., & Thill, J.-C. (2005). How far is too far? - A statistical approach to context-contingent proximity modeling. Transactions in GIS, 9(2), 157–178. doi:10.1111/j.1467-9671.2005.00211.x
  • Zwarts, J. (2017). Spatial semantics: Modeling the meaning of prepositions. Language and Linguistics Compass, 11(e12241), 1–20. doi:10.1111/lnc3.12241
  • Zwarts, J., & Gärdenfors, P. (2015). Locative and directional prepositions in conceptual spaces: The role of polar convexity. Journal of Logic, Language and Information, 25(1), 109–138. doi:10.1007/s10849-015-9224-5
  • Zwarts, J, & Winter, Y. (2000). Vector space semantics: a model-theoretic analysis of locative prepositions. Journal of Logic, Language and Information, 9, 169–211. doi:10.1023/A:1008384416604

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.